24 resultados para Aryl Hydrocarbon Hydroxylases

em Deakin Research Online - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cell culture systems are instrumental in elucidating regulation of normal function and mechanisms of its perturbation by toxic substances. To this end, three applications of epithelial cells cultured with 3T3 feeder layer support are described. First, treatment of the premalignant human epidermal keratinocyte line SCC-12F2 with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate suppressed cell growth and differentiation. This agent produced a biphasic growth response greatly inhibiting cell growth at 1 to 10 nM, but much less above 100 nM. Expression of the differentiated functions involucrin and transglutaminase was found to be inhibited markedly at concentrations above 10 nM. Second, 3-methylcholanthrene toxicity was surveyed in a variety of rat epithelial cell types. The two most sensitive to growth inhibition were epidermal and mammary epithelial cells, while those from bladder, prostate, thyroid, and endometrium were insensitive to growth inhibition. Great differences were evident even among those cells derived from stratified squamous epithelia (epidermal, esophageal, vaginal, forestomach) despite their expression of aryl hydrocarbon hydroxylase activities to similar degrees. Finally, expression of estrogen receptors in rat endometrial cells was shown to be stimulated by the cAMP-elevating agent forskolin. Maximal stimulation of 3- to 6-fold occurred in 6 hr, compatible with a requirement for protein synthesis. Although expressing keratinocyte character (transglutaminase activity and envelope forming ability), the cells thus retain some hormonal character that may be modulated by cAMP-dependent kinase activity. Pursuit of such results will aid in understanding differences in response among cell types and species, in elucidating mechanisms of action of known toxic substances and, ultimately, in predicting toxicity of less well understood agents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is a growing awareness that gut commensal metabolites play a major role in host physiology and indeed the pathophysiology of several illnesses. The composition of the microbiota largely determines the levels of tryptophan in the systemic circulation and hence, indirectly, the levels of serotonin in the brain. Some microbiota synthesize neurotransmitters directly, e.g., gamma-amino butyric acid, while modulating the synthesis of neurotransmitters, such as dopamine and norepinephrine, and brain-derived neurotropic factor (BDNF). The composition of the microbiota determines the levels and nature of tryptophan catabolites (TRYCATs) which in turn has profound effects on aryl hydrocarbon receptors, thereby influencing epithelial barrier integrity and the presence of an inflammatory or tolerogenic environment in the intestine and beyond. The composition of the microbiota also determines the levels and ratios of short chain fatty acids (SCFAs) such as butyrate and propionate. Butyrate is a key energy source for colonocytes. Dysbiosis leading to reduced levels of SCFAs, notably butyrate, therefore may have adverse effects on epithelial barrier integrity, energy homeostasis, and the T helper 17/regulatory/T cell balance. Moreover, dysbiosis leading to reduced butyrate levels may increase bacterial translocation into the systemic circulation. As examples, we describe the role of microbial metabolites in the pathophysiology of diabetes type 2 and autism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Accumulating evidence, from animal models and human observational studies, implicates the in utero (and early postnatal) environment in the 'programming' of risk for a variety of adverse outcomes and health trajectories. The modern environment is replete with man-made compounds such as plastic product chemicals (PPC), including phenols and phthalates. Evidence from several human cohorts implicates exposure to these chemicals in adverse offspring neurodevelopment, though a direct causal relationship has not been firmly established. In this review we consider a potential causal pathway that encompasses epigenetic human variation, and how we might test this mechanistic hypothesis in human studies. In the first part of this report we outline how PPCs induce epigenetic change, focusing on the brain derived neurotrophic factor (BDNF) gene, a key regulator of neurodevelopment. Further, we discuss the role of the epigenetics of BDNF and other genes in neurodevelopment and the emerging human evidence of an association between phthalate exposure and adverse offspring neurodevelopment. We discuss aspects of epidemiological and molecular study design and analysis that could be employed to strengthen the level of human evidence to infer causality. We undertake this using an exemplar recent research example: maternal prenatal smoking, linked to methylation change at the aryl hydrocarbon receptor repressor (AHRR) gene at birth, now shown to mediate some of the effects of maternal smoking on birth weight. Characterizing the relationship between the modern environment and the human molecular pathways underpinning its impact on early development is paramount to understanding the public health significance of modern day chemical exposures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A testing facility for combustion of biomass and sampling of emissions has been established at Deakin University. In this pilot project using this facility, four kinds of locally grown wood species were burned and the particle emissions sampled and analysed for Polycyclic Aromatic Hydrocarbons (PAHs). The selected wood species covering pine, red gum, yellow box and sugar gum, are the most popular domestic fuel wood in Australia. Particulate matter emissions from burning of each load of wood were sampled from the flue using a standard stack emission sampling train. The particle-laden filters were extracted and the .extract analysed to determine PAH concentrations by Gas Chromatographyl Mass Spectrometer (Gc/MS). The sampling was conducted under two different burning conditions with the air inlet of the combustion chamber fully open and with it half open. A suite of 15 PAHs, ranging from naphthalene (C IOHB) to dibenzolahlanthracene (C12H14), were selected for analysis. PAH profiles for the four wood species, under the different burning regimes, have been generated. Some preliminary emission factors for the different wood species have been derived as microgram of summed PAHs (rPAHs) emittedlkilogram of wood burned. Total Particulate Matter (TPM) emission factors were also obtained from gravimetric measurement of the sample filter before and after the combustion. Based on these emission factors, pine displayed the highest level of rPAHs emitted from the combustion of the four wood species, with sugar gum showing the lowest level of rPAHs emission. Emission factors associated with the slow burning condition clearly showed higher l:PAH levels compared to the faster burning condition. During the faster burning condition, red gum and pine show a higher percentage of rPAH to TPM than sugar gum or yellow box. Under the slower burning. the l:PAHlTPM ratio in every case was greater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been shown that CO2 could be transformed into hydrocarbons when it is in contact with water vapour and catalysts under UV irradiation. This paper presents an experimental set-up to study the process employing a new approach of heterogeneous photocatalysis using pellet form of catalyst instead of immobilized catalysts on solid substrates. In the experiment, CO2 mixed with water vapour in saturation state was discharged into a quartz reactor containing porous TiO2 pellets and illuminated by various UV lamps of different wavelengths for 48 h continuously. The gaseous products extracted were identified using gas chromatography. The results confirmed that CO2 could be reformed in the presence of water vapour and TiO2 pellets into CH4 under continuous UV irradiation at room conditions. It showed that when UVC (253.7 nm) light was used, total yield of methane was approximately 200 ppm which was a fairly good reduction yield as compared to those obtained from the processes using immobilized catalysts through thin-film technique and anchoring method. CO and H2 were also detected. Switching from UVC to UVA (365 nm) resulted in significant decrease in the product yields. The pellet form of catalyst has been found to be attractive for use in further research on photocatalytic reduction of CO2.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural investigations, i.e. solid-state (X-ray), solution (1H NMR) and gas-phase (theoretical), on molecules with the general formula MeOC(S)N(H)C6H4-4-Y: Y = H (1), NO2 (2), C(O)Me (3), Cl (4) have shown a general preference for the adoption of an E-conformation about the central C–N bond. Such a conformation allows for the formation of a dimeric hydrogen-bonded {H–N–C=S}2 synthon as the building block. In the cases of 1–3, additional C–H...O interactions give rise to the formation of tapes of varying topology. A theoretical analysis shows that the preference for the E-conformation is about the same as the crystal packing stabilisation energy and consistent with this, the compound with Y = C(O)OMe, (5), adopts a Z-conformation in the solid-state that facilitates the formation of N–H...O, C–H...O and C–H...S interactions, leading to a layer structure. Global crystal packing considerations are shown to be imperative in dictating the conformational form of molecules 1–5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrophilic substitution of acylmethanes (methyl ketones), RCOCH3 (R = i-Pr, 1; Et, 2; Me, 3) with aryltellurium trichlorides, ArTeCl3 (Ar = 1-C10H7, Np, A; 2,4,6-Me3C6H2, Mes, B; 4-MeOC6H4, Anisyl, C) under mild conditions affords the corresponding acylmethyl(aryl)tellurium dichlorides (RCOCH2)ArTeCl2. Reduction of the dichlorides, gives tellurides, (i-PrCOCH2)ArTe, 1A–1C, which give the corresponding dihalides, (i-PrCOCH2)ArTeX2 (X = Cl, 1Aa–1Ca; Br, 1Ab–1Cb; I, 1Ac–1Cc) when reacted in situ with SO2Cl2, Br2 or I2. The unsymmetric tellurides are labile towards disproportionation and attempts to obtain them lead to the isolation of Ar2Te2 except in the case of (i-PrCOCH2)MesTe ( 1B), which represents an interesting example of a kinetically stable aryl(alkyl)telluride. All the dihalomesityltellurium(IV) derivatives show separate 1H and 13C NMR signals for the ortho methyls irrespective of the sizes of R and X ligands. The telluride, 1B with free rotation about Te–C(mesityl) bond shows, like the unsymmetric diorganotellurium(IV) dihalides, only one 125Te NMR signal. The 1,4-chelating behavior of the acyl ligand among diorganotellurium(IV) compounds is inferred from the X-ray diffraction data for 1Aa, 1Ac, 1Ba, 1Bb, 1Ca and 1Cc which are indicative of the presence of intramolecular TeO secondary bonding interactions (SBIs) at least in the solid state. As a consequence, steric repulsion in case of the mesityltellurium(IV) derivatives, 1Ba and 1Bb, reaches the threshold so as to cause loss of two-fold rotational symmetry of the mesityl group about the Te–C(mesityl) bond axis. Intermolecular C–HO H-bonding interactions appears to stabilize such an orientation of the aryl ligand at least in the solid state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental studies were focused on the feasibility of utilization of hydrocarbons diluted with inert gases (such as associated oil gases) during the synthesis of nanofibrous carbon. The carbon yield and catalyst lifetime were studied regarding the initial reaction mixture parameters. Varying the composition of the initial gas mixture, it is possible to control textural characteristics of the resulting carbon product.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cuticular hydrocarbons (CHCs) of ants provide important cues for nestmate and caste recognition. There is enormous diversity in the composition of these CHCs, but the manner in which this diversity has evolved is poorly understood. We gathered data on CHC profiles for 56 ant species, relating this information to their phylogeny. We deduced the mode of evolution of CHC profiles by reconstructing character evolution and then relating the number of changes in CHC components along each branch of the phylogeny to the length of the branch. There was a strong correlation between branch length and number of component changes, with fewer changes occurring on short branches. Our analysis thereby indicated a gradual mode of evolution. Different ant species tend to use specific CHC structural types that are exclusive of other structural types, indicating that species differences may be generated in part by switching particular biosynthetic pathways on or off in different lineages. We found limited, and contradictory, evidence for abiotic factors (temperature and rainfall) driving change in CHC profiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct measurements of the force between two molecularly smooth mica sheets immersed in cyclohexane show not a monotonic van der Waals attraction, but an oscillatory function of distance, where the spacing between successive minima corresponds to the molecular diameter of cyclohexane. As surface separation increases the oscillations become less pronounced, and beyond 5 nm (typically seven or eight oscillations) they are no longer detected. These results accord with theoretical ideas on structural forces resulting from the inhomogeneous arrangement of molecules of the liquid near the solid surface. In n-octane the force law does not show the same pronounced oscillations, except at very small separations where repulsive barriers are found. These are attributed to the difficulty of removing the last layers of adsorbed molecules of the liquid from the mica surfaces, and they reduce the mice-mica adhesion significantly. Small amounts of water in the hydrocarbon liquids condense to form a bridge between the surfaces at small separations, causing a very strong adhesion between them. Some implications of these results for the stability of colloids in organic media are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four new triphenyltin(IV) complexes of composition Ph3SnLH (where LH = 2-/4-[(E)-2-(aryl)-1-diazenyl]benzoate) (1–4) were synthesized and characterized by spectroscopic (1H, 13C and 119Sn NMR, IR, 119Sn Mössbauer) techniques in combination with elemental analysis. The 119Sn NMR spectroscopic data indicate a tetrahedral coordination geometry in non-coordinating solvents. The crystal structures of three complexes, Ph3SnL1H (1), Ph3SnL3H (3), Ph3SnL4H (4), were determined. All display an essentially tetrahedral geometry with angles ranging from 93.50(8) to 124.5(2)°; 119Sn Mössbauer spectral data support this assignment. The cytotoxicity studies were performed with complexes 1–4, along with a previously reported complex (5) in vitro across a panel of human tumor cell lines viz., A498, EVSA-T, H226, IGROV, M19 MEL, MCF-7 and WIDR. The screening results were compared with the results from other related triphenyltin(IV) complexes (6–7) and tributyltin(IV) complexes (8–11) having 2-/4-[(E)-2-(aryl)-1-diazenyl]benzoates framework. In general, the complexes exhibit stronger cytotoxic activity. The results obtained for 1–3 are also comparable to those of its o-analogs i.e. 4–7, except 5, but the advantage is the former set of complexes demonstrated two folds more cytotoxic activity for the cell line MCF-7 with ID50 values in the range 41–53 ng/ml. Undoubtedly, the cytotoxic results of complexes 1–3 are far superior to CDDP, 5-FU and ETO, and related tributyltin(IV) complexes 8–11. The quantitative structure-activity relationship (QSAR) studies for the cytotoxicity of triphenyltin(IV) complexes 1–7 and tributyltin(IV) complexes 8–11 is also discussed against a panel of human tumor cell lines.