32 resultados para Anti-Bacterial Agents

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of structurally amphiphilic biscationic norbornanes have been synthesised as rigidified, low molecular weight peptidomimetics of cationic antimicrobial peptides. A variety of charged hydrophilic functionalities were attached to the norbornane scaffold including aminium, guanidinium, imidazolium and pyridinium moieties. Additionally, a range of hydrophobic groups of differing sizes were incorporated through an acetal linkage. The compounds were evaluated for antibacterial activity against both Gram-negative and Gram-positive bacteria. Activity was observed across the series; the most potent of which exhibited an MIC's ≤ 1 μg mL(-1) against Streptococcus pneumoniae, Enterococcus faecalis and several strains of Staphylococcus aureus, including multi-resistant methicillin resistant (mMRSA), glycopeptide-intermediate (GISA) and vancomycin-intermediate (VISA) S. aureus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Inflammation has been implicated in the risk, pathophysiology, and progression of mood disorders and, as such, has become a target of interest in the treatment of bipolar disorder (BD). Therefore, the objective of the current qualitative and quantitative review was to determine the overall antidepressant effect of adjunctive anti-inflammatory agents in the treatment of bipolar depression. METHODS: Completed and ongoing clinical trials of anti-inflammatory agents for BD published prior to 15 May 15 2015 were identified through searching the PubMed, Embase, PsychINFO, and Clinicaltrials.gov databases. Data from randomized controlled trials (RCTs) assessing the antidepressant effect of adjunctive mechanistically diverse anti-inflammatory agents were pooled to determine standard mean differences (SMDs) compared with standard therapy alone. RESULTS: Ten RCTs were identified for qualitative review. Eight RCTs (n = 312) assessing adjunctive nonsteroidal anti-inflammatory drugs (n = 53), omega-3 polyunsaturated fatty acids (n = 140), N-acetylcysteine (n = 76), and pioglitazone (n = 44) in the treatment of BD met the inclusion criteria for quantitative analysis. The overall effect size of adjunctive anti-inflammatory agents on depressive symptoms was -0.40 (95% confidence interval -0.14 to -0.65, p = 0.002), indicative of a moderate and statistically significant antidepressant effect. The heterogeneity of the pooled sample was low (I² = 14%, p = 0.32). No manic/hypomanic induction or significant treatment-emergent adverse events were reported. CONCLUSIONS: Overall, a moderate antidepressant effect was observed for adjunctive anti-inflammatory agents compared with conventional therapy alone in the treatment of bipolar depression. The small number of studies, diversity of agents, and small sample sizes limited interpretation of the current analysis.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

• Guidelines reflecting contemporary clinical practice in the management of Buruli ulcer (Mycobacterium ulcerans infection) in Australia were published in 2007.

• Management has continued to evolve, as new evidence has become available from randomised trials, case series and increasing clinical experience with oral antibiotic therapy.

• Therefore, guidelines on the diagnosis, treatment and prevention of Buruli ulcer in Australia have been updated. They include guidance on the new role of antibiotics as first-line therapy; the shortened duration of antibiotic treatment and the use of all-oral antibiotic regimens; the continued importance, timing and role of surgery; the recognition and management of paradoxical reactions during antibiotic treatment; and updates on the prevention of disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of bacteria in the regression of tumors has long been known. Various approaches for using bacteria in cancer therapy include the use of bacteria as sensitizing agents for chemotherapy, as delivery agents for cancer drugs and as agents for gene therapy. The tumor regression stimulated by infecting microorganisms has been attributed to activation of the immune system of the host. However, recent studies indicate that when tumor-harboring mice with defective immune systems are infected with certain microorganisms, the regression of the tumor is still observed, suggesting that there are other host factors contributing to the microbial associated regression of tumors. Since the use of live or attenuated bacteria for tumor regression has associated toxic effects, studies are in progress to identify a pure microbial metabolite or any component of the microbial cell that might have anti-cancer activity. It has now been demonstrated that a redox protein from Pseudomonas aeruginosa, a cupredoxin, can enter into human cancer cells and trigger the apoptotic cell death. In vivo, this cupredoxin can lead to the regression of tumor growth in immunodeficient mice harboring xenografted melanomas and breast cancer tumors without inducing significant toxic effects, suggesting that it has potential anti-cancer activity. This bacterial protein interacts with p53 and modulates mammalian cellular activity. Hence, it could potentially be used as an anti-cancer agent for solid tumors and has translational value in tumor-targeted or in combinational-biochemotherapy strategies for cancer treatments. Here, we focus on diverse approaches to cancer biotherapy, including bacteriolytic and bacterially-derived anti-cancer agents with an emphasis on their mechanism of action and therapeutic potential.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biofilm formation on membranes during water desalination operation and pre-treatments limits performance and causes premature membrane degradation. Here, we apply a novel surface modification technique to incorporate anti-microbial metal particles into the outer layer of four types of commercial polymeric membranes by cold spray. The particles are anchored on the membrane surface by partial embedment within the polymer matrix. Although clear differences in particle surface loadings and response to the cold spray were shown by SEM, the hybrid micro-filtration and ultra-filtration membranes were found to exhibit excellent anti-bacterial properties. Poly(sulfone) ultra-filtration membranes were used as for cross-flow filtration of Escherichia coli bacteria solutions to investigate the impact of the cold spray on the material[U+05F3]s integrity. The membranes were characterized by SEM-EDS, FT-IR and TGA and challenged in filtration tests. No bacteria passed through the membrane and filtrate water quality was good, indicating the membranes remained intact. No intact bacteria were found on hybrid membranes, loaded with up to 15. wt% silver, indicating the treatment was lysing bacteria on contact. However, permeation of the hybrid membranes was found to be reduced compared to control non-modified poly(sulfone) membranes due to the presence of the particles across the membrane material. The implementation of cold spray technology for the modification of commercial membrane products could lead to significant operational savings in the field of desalination and water pre-treatments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

AIM: There is growing support for the role of inflammation and oxidative stress in the pathophysiology of major depressive disorder (MDD). This has led to the development of novel strategies targeting inflammation in the treatment of depression. Rosuvastatin and aspirin have well-documented, anti-inflammatory and antioxidant properties. The aim of the Youth Depression Alleviation: Augmentation with an anti-inflammatory agent (YoDA-A) study is to determine whether individuals receiving adjunctive anti-inflammatory agents, aspirin and rosuvastatin experience a reduction in the severity of MDD compared with individuals receiving placebo. METHODS: YoDA-A is a 12-week triple-blind, randomized controlled trial funded by the National Health and Medical Research Council, Australia. Participants aged 15-25, with moderate-to-severe MDD, are allocated to receive either 10 mg/day rosuvastatin, 100 mg/day aspirin, or placebo, in addition to treatment as usual. Participants are assessed at baseline and at weeks 4, 8, 12 and 26. The primary outcome is change in the Montgomery-Åsberg Depression Rating Scale (MADRS) from baseline to week 12. RESULTS: The study is planned to be completed in 2017. At date of publication, 85 participants have been recruited. CONCLUSION: Timely and targeted intervention for youth MDD is crucial. Given the paucity of new agents to treat youth MDD, adjunctive trials are not only pragmatic and 'real-world', but additionally aim to target shortfalls in conventional medications. This study has the potential to first provide two new adjunctive treatment options for youth MDD; aspirin and rosuvastatin. Second, this study will serve as proof of principle of the role of inflammation in MDD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

By searching the literatures, it was found that a total of 32 drugs interacting with herbal medicines in humans. These drugs mainly include anticoagulants (warfarin, aspirin and phenprocoumon), sedatives and antidepressants (midazolam, alprazolam and amitriptyline), oral contraceptives, anti-HIV agents (indinavir, ritonavir and saquinavir), cardiovascular drug (digoxin), immunosuppressants (cyclosporine and tacrolimus) and anticancer drugs (imatinib and irinotecan). Most of them are substrates for cytochrome P450s (CYPs) and/or P-glycoprotein (PgP) and many of which have narrow therapeutic indices. However, several drugs including acetaminophen, carbamazepine, mycophenolic acid, and pravastatin did not interact with herbs. Both pharmacokinetic (e.g. induction of hepatic CYPs and intestinal PgP) and/or pharmacodynamic mechanisms (e.g. synergistic or antagonistic interaction on the same drug target) may be involved in drug-herb interactions, leading of altered drug clearance, response and toxicity. Toxicity arising from drug-herb interactions may be minor, moderate, or even fatal, depending on a number of factors associated with the patients, herbs and drugs. Predicting drug-herb interactions, timely identification of drugs that interact with herbs, and therapeutic drug monitoring may minimize toxic drug-herb interactions. It is likely to predict pharmacokinetic herb-drug interactions by following the pharmacokinetic principles and using proper models that are used for predicting drug-drug interactions. Identification of drugs that interact with herbs can be incorporated into the early stages of drug development. A fourth approach for circumventing toxicity arising from drug-herb interactions is proper design of drugs with minimal potential for herbal interaction. So-called ”hard drugs” that are not metabolized by CYPs and not transported by PgP are believed not to interact with herbs due to their unique pharmacokinetic properties. More studies are needed and new approached are required to minimize toxicity arising from drug-herb interactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Consistent with its highest abundance in humans, cytochrome P450 (CYP) 3A is responsible for the metabolism of about 60% of currently known drugs. However, this unusual low substrate specificity also makes CYP3A4 susceptible to reversible or irreversible inhibition by a variety of drugs. Mechanism-based inhibition of CYP3A4 is characterised by nicotinamide adenine dinucleotide phosphate hydrogen (NADPH)-, time- and concentration-dependent enzyme inactivation, occurring when some drugs are converted by CYP isoenzymes to reactive metabolites capable of irreversibly binding covalently to CYP3A4. Approaches using in vitro, in silico and in vivo models can be used to study CYP3A4 inactivation by drugs. Human liver microsomes are always used to estimate inactivation kinetic parameters including the concentration required for half-maximal inactivation (K(I)) and the maximal rate of inactivation at saturation (k(inact)).Clinically important mechanism-based CYP3A4 inhibitors include antibacterials (e.g. clarithromycin, erythromycin and isoniazid), anticancer agents (e.g. tamoxifen and irinotecan), anti-HIV agents (e.g. ritonavir and delavirdine), antihypertensives (e.g. dihydralazine, verapamil and diltiazem), sex steroids and their receptor modulators (e.g. gestodene and raloxifene), and several herbal constituents (e.g. bergamottin and glabridin). Drugs inactivating CYP3A4 often possess several common moieties such as a tertiary amine function, furan ring, and acetylene function. It appears that the chemical properties of a drug critical to CYP3A4 inactivation include formation of reactive metabolites by CYP isoenzymes, preponderance of CYP inducers and P-glycoprotein (P-gp) substrate, and occurrence of clinically significant pharmacokinetic interactions with coadministered drugs.Compared with reversible inhibition of CYP3A4, mechanism-based inhibition of CYP3A4 more frequently cause pharmacokinetic-pharmacodynamic drug-drug interactions, as the inactivated CYP3A4 has to be replaced by newly synthesised CYP3A4 protein. The resultant drug interactions may lead to adverse drug effects, including some fatal events. For example, when aforementioned CYP3A4 inhibitors are coadministered with terfenadine, cisapride or astemizole (all CYP3A4 substrates), torsades de pointes (a life-threatening ventricular arrhythmia associated with QT prolongation) may occur.However, predicting drug-drug interactions involving CYP3A4 inactivation is difficult, since the clinical outcomes depend on a number of factors that are associated with drugs and patients. The apparent pharmacokinetic effect of a mechanism-based inhibitor of CYP3A4 would be a function of its K(I), k(inact) and partition ratio and the zero-order synthesis rate of new or replacement enzyme. The inactivators for CYP3A4 can be inducers and P-gp substrates/inhibitors, confounding in vitro-in vivo extrapolation. The clinical significance of CYP3A inhibition for drug safety and efficacy warrants closer understanding of the mechanisms for each inhibitor. Furthermore, such inactivation may be exploited for therapeutic gain in certain circumstances.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A number of therapeutic drugs with different structures and mechanisms of action have been reported to undergo metabolic activation by Phase I or Phase II drug-metabolizing enzymes. The bioactivation gives rise to reactive metabolites/intermediates, which readily confer covalent binding to various target proteins by nucleophilic substitution and/or Schiff's base mechanism. These drugs include analgesics (e.g., acetaminophen), antibacterial agents (e.g., sulfonamides and macrolide antibiotics), anticancer drugs (e.g., irinotecan), antiepileptic drugs (e.g., carbamazepine), anti-HIV agents (e.g., ritonavir), antipsychotics (e.g., clozapine), cardiovascular drugs (e.g., procainamide and hydralazine), immunosupressants (e.g., cyclosporine A), inhalational anesthetics (e.g., halothane), nonsteroidal anti-inflammatory drugs (NSAIDSs) (e.g., diclofenac), and steroids and their receptor modulators (e.g., estrogens and tamoxifen). Some herbal and dietary constituents are also bioactivated to reactive metabolites capable of binding covalently and inactivating cytochrome P450s (CYPs). A number of important target proteins of drugs have been identified by mass spectrometric techniques and proteomic approaches. The covalent binding and formation of drug-protein adducts are generally considered to be related to drug toxicity, and selective protein covalent binding by drug metabolites may lead to selective organ toxicity. However, the mechanisms involved in the protein adduct-induced toxicity are largely undefined, although it has been suggested that drug-protein adducts may cause toxicity either through impairing physiological functions of the modified proteins or through immune-mediated mechanisms. In addition, mechanism-based inhibition of CYPs may result in toxic drug-drug interactions. The clinical consequences of drug bioactivation and covalent binding to proteins are unpredictable, depending on many factors that are associated with the administered drugs and patients. Further studies using proteomic and genomic approaches with high throughput capacity are needed to identify the protein targetsof reactive drug metabolites, and to elucidate the structure-activity relationships of drug's covalent binding to proteins and their clinical outcomes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acute tendon pain in athletes is a condition that is difficult to manage. There are few treatment options that give adequate pain relief and have a theoretical basis for efficacy. We report the use of a novel “polypill” for tendon pain, and provide evidence for the basis for its use. We present it to stimulate discussion and research into a new area of tendinopathy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The prevalence of type 2 diabetes has reached to an epidemic proportion in Sri Lanka. The need for achieving better control of blood glucose level has been evident in diabetes management. However it is not easy to achieve this goal in a large proportion of patients. This is partly due to limitations of currently available pharmacological agents which stimulate research on novel anti-diabetic agents with different mechanisms. Digestive enzymes have been targeted as potential avenues for modulation of blood glucose concentration through inhibition of the enzymatic breakdown of complex carbohydrates to meal derived glucose absorption. Acarbose is a widely used oral anti-diabetic drug which inhibits the α-glucosidase, enzyme responsible for breaking down of disaccharides and polysaccharides into glucose. Many herbal extracts have been found to posses similar inhibitory effects. Ginger (Zingiber officinale Roscoe) has developed a reputation in treatment of several diseases. In vitro enzymic inhibitory effect of ginger was investigated in this study. Enzymes α -amylase and α -glucosidase treated with either Acarbose or ginger extract were allowed to react with cooked rice and percentages of glucose content were measured. The glucosidase and amylase activities on the rice were inhibited by addition of ginger cause significant reduction in glucose percentages (36.86± 1.05 to 26.87± 2.17, P<0.05 and 49.04±0.65 to 35.35±2.22, P<0.05) which showed comparable results with Acarbose on glucosidase activity (36.86± 1.05 to, 27.8±1.32 P<0.05). Results of the study indicates ginger as a potential plant based amylase and glucosidase inhibitor in carbohydrate digestion but usage in glycaemic control in human has to be investigated further.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intense exercise results in muscular inflammation. Molecular techniques were used to identify novel inflammatory proteins in human muscle. Males and females displayed different levels of exercise-induced inflammatory proteins. Interestingly, dairy protein supplements reduced these inflammatory proteins post-exercise. Increased dietary red meat consumption, with training, had no impact on muscle inflammation, although strength gain was improved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work examined the effects of a novel dairy fatty acid conjugated linoleic acid (CLA) and its effects on muscle wasting in advanced cancer. Results showed a positive anti-inflammatory role of CLA on the supression of tumour growth and established a model for studying the action of CLA in human muscle-wasting conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oleocanthal has gained much interest as a natural anti-inflammatory phenolic component in olive oil. The studies conducted as part of this thesis demonstrate that oleocanthal is a stable olive oil phenolic with potential to be a prime health benefiting compound.