31 resultados para Analysis of gene expression

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microarray plays a major role to identify the over- and under-expressed genes. It is a well-known fact that trace elements in our body play a major role in the metabolic processes of all living organisms. In this paper, the microarray studies related to major trace metals are reviewed. This review forms the basis for the converged effort to locate the genes that are either defective and destabilise the concentration of the trace metals or influenced by the changed concentration of the trace metals that are needed for proper functions of the human body, at different parts of the body.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective:  Alterations in gene expression in bipolar disorder have been found in numerous studies. It is unclear whether such alterations are related to specific mood states. As a biphasic disorder, mood state-related alterations in gene expression have the potential to point to markers of disease activity, and trait-related alterations might indicate vulnerability pathways. This review therefore evaluated the evidence for whether gene expression in bipolar disorder is state or trait related.

Methods:  A systematic review, using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guideline for reporting systematic reviews, based on comprehensive database searches for studies on gene expression in patients with bipolar disorder in specific mood states, was conducted. We searched Medline, Embase, PsycINFO, and The Cochrane Library, supplemented by manually searching reference lists from retrieved publications.

Results:  A total of 17 studies were included, comprising 565 patients and 418 control individuals. Six studies evaluated intraindividual alterations in gene expression across mood states. Two of five studies found evidence of intraindividual alterations in gene expression between a depressed state and a euthymic state. No studies evaluated intraindividual differences in gene expression between a manic state and a euthymic state, while only one case study evaluated differences between a manic state and a depressed state, finding altered expression in seven genes. No study investigated intraindividual variations in gene expression between a euthymic state and multiple states of various polarities (depressive, manic, hypomanic). Intraindividual alterations in expression of the same genes were not investigated across studies. Only one gene (the brain-derived neurotrophic factor gene; BDNF) was investigated across multiple studies, showing no alteration between bipolar disorder patients and control individuals.

Conclusions:  There is evidence of some genes exhibiting state-related alterations in expression in bipolar disorder; however, this finding is limited by the lack of replication across studies. Further prospective studies are warranted, measuring gene expression in various affective phases, allowing for assessment of intraindividual differences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: In small mammals brown adipose tissue (BAT) plays a predominant role in regulating energy expenditure (EE) via adaptive thermogenesis. New-born babies require BAT to control their body temperature, however its relevance in adults has been questioned. Active BAT has recently been observed in adult humans, albeit in much lower relative quantities than small mammals. Comparing and contrasting the molecular mechanisms controlling BAT growth and development in mice and humans will increase our understanding or how human BAT is developed and may identify potential therapeutic targets to increase EE. MicroRNAs are molecular mechanisms involved in mouse BAT development however, little is known about the miRNA profile in human BAT. The aims of this study were to establish a mouse BAT-enriched miRNA profile and compare this with miRNAs measured in human BAT. To achieve this we firstly established a mouse BAT enriched-miRNA profile by comparing miRNAs expressed in mouse BAT, white adipose tissue and skeletal muscle. Following this the BAT-enriched miRNAs predicted to target genes potentially involved in growth and development were identified.

METHODS: MiRNA levels were measured using PCR-based miRNA arrays. Results were analysed using ExpressionSuite software with the global mean expression value of all expressed miRNAs in a givensample used as the normalisation factor. Bio-informatic analyses was used to predict gene targets followed by Ingenuity Pathway Analysis.

RESULTS: We identified 35 mouse BAT-enriched miRNAs that were predicted to target genes potentially involved in growth and development. We also identified 145 miRNAs expressed in both mouse and human BAT, of which 25 were enriched in mouse BAT. Of these 25 miRNAs, miR-20a was predicted to target MYF5 and PPARγ, two important genes involved in brown adipogenesis, as well as BMP2 and BMPR2, genes involved in white adipogenesis. For the first time, 69 miRNAs were identified in human BAT but absent in mouse BAT, and 181 miRNAs were expressed in mouse but not in human BAT.

CONCLUSION: The present study has identified a small sub-set of miRNAs common to both mouse and human BAT. From this sub-set bioinformatics analysis suggested a potential role of miR-20a in the control of cell fate and this warrants further investigation. The large number of miRNAs found only in mouse BAT or only in human BAT highlights the differing molecular profile between species that is likely to influence the functional role of BAT across species. Nevertheless the BAT-enriched miRNA profiles established in the present study suggest targets to investigate in the control BAT development and EE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular processes underlying human milk production and the effects of mastitic infection are largely unknown because of limitations in obtaining tissue samples. Determination of gene expression in normal lactating women would be a significant step toward understanding why some women display poor lactation outcomes. Here, we demonstrate the utility of RNA obtained directly from human milk cells to detect mammary epithelial cell (MEC)-specific gene expression. Milk cell RNA was collected from five time points (24 h prepartum during the colostrum period, midlactation, two involutions, and during a bout of mastitis) in addition to an involution series comprising three time points. Gene expression profiles were determined by use of human Affymetrix arrays. Milk cells collected during milk production showed that the most highly expressed genes were involved in milk synthesis (e.g., CEL, OLAH, FOLR1, BTN1A1, and ARG2), while milk cells collected during involution showed a significant downregulation of milk synthesis genes and activation of involution associated genes (e.g., STAT3, NF-kB, IRF5, and IRF7). Milk cells collected during mastitic infection revealed regulation of a unique set of genes specific to this disease state, while maintaining regulation of milk synthesis genes. Use of conventional epithelial cell markers was used to determine the population of MECs within each sample. This paper is the first to describe the milk cell transcriptome across the human lactation cycle and during mastitic infection, providing valuable insight into gene expression of the human mammary gland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variability in human taste perception is associated with both genetic and environmental factors. The influence of taste receptor expression on this variability is unknown, in part, due to the difficulty in obtaining human oral tissue that enables quantitative expression measures of taste genes. In a comparison of six current techniques (Oragene RNeasy Kit, Isohelix swab, Livibrush cytobrush, tongue saliva, cheek saliva collection, and fungiform papillae biopsy), we identify the fungiform papillae biopsy is the optimal sampling technique to analyse human taste gene expression. The fungiform papillae biopsy resulted in the highest RNA integrity, enabling amplification of all the assessed taste receptor genes (TAS1R1, TAS1R2, TAS1R3, SCNN1A and CD36) and taste tissue marker genes (NCAM1, GNAT3 and PLCβ2). Furthermore, quantitative expression was observed in a subset of taste genes assessed from the saliva collection techniques (cheek saliva, tongue saliva and Oragene RNA kit). These saliva collection techniques may be useful as a non-invasive alternative sampling technique to the fungiform papillae biopsy. Identification of the fungiform papillae biopsy as the optimal collection method will facilitate further research into understanding the effect of gene expression on variability in human taste perception.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene Expression Comparative Analysis allows bioinformatics researchers to discover the conserved or specific functional regulation of genes. This is achieved through comparisons between quantitative gene expression measurements obtained in different species on different platforms to address a particular biological system. Comparisons are made more difficult due to the need to map orthologous genes between species, pre-processing of data (normalization) and post-analysis (statistical and correlation analysis). In this paper we introduce a web-based software package called EXP-PAC which provides on line interfaces for database construction and query of data, and makes use of a high performance computing platform of computer clusters to run gene sequence mapping and normalization methods in parallel. Thus, EXP-PAC facilitates the integration of gene expression data for comparative analysis and the online sharing, retrieval and visualization of complex multi-specific and multi-platform gene expression results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arabidopsis thaliana ecotype Columbia-0 was transformed with a green fluorescent protein (GFP) gene under control of a phenylalanine ammonia-lyase (PAL) promoter. PAL is a key enzyme of the phenylpropanoid pathway and is induced to high levels during plant stress. Constitutive expression of PAL1 promoter-controlled GFP occurred in vascular tissues within stems, leaves and roots and in developing flowers. PAL1 promoter–GFP expression was examined in leaves of transgenic plants subjected to an abiotic elicitor, mechanical wounding or to inoculation with the pathogens Pseudomonas syringae pv. tomato or Peronospora parasitica. Wounding of leaves and treatment with an abiotic elicitor and compatible interactions produced low to moderate levels of GFP. However, in incompatible interactions there were high levels of GFP produced. In incompatible interactions, the intensity of GFP fluorescence was similar to that produced in transgenic plants expressing GFP driven by the CaMV promoter. The bright green fluorescence produced in live cells and tissues was readily visualised using conventional fluorescence microscopy and was quantified using spectroflourometry. This is the first report of the use of GFP as a reporter of defence gene activation against pathogens. It has several advantages over other reporter genes including real time analysis of gene expression and visualisation of defence gene activation in a non-invasive manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background

Imatinib mesylate is currently the drug of choice to treat chronic myeloid leukemia. However, patient resistance and cytotoxicity make secondary lines of treatment, such as omacetaxine mepesuccinate, a necessity. Given that drug cytotoxicity represents a major problem during treatment, it is essential to understand the biological pathways affected to better predict poor drug response and prioritize a treatment regime.
Methods

We conducted cell viability and gene expression assays to determine heritability and gene expression changes associated with imatinib and omacetaxine treatment of 55 non-cancerous lymphoblastoid cell lines, derived from 17 pedigrees. In total, 48,803 transcripts derived from Illumina Human WG-6 BeadChips were analyzed for each sample using SOLAR, whilst correcting for kinship structure.
Results

Cytotoxicity within cell lines was highly heritable following imatinib treatment (h2 = 0.60-0.73), but not omacetaxine treatment. Cell lines treated with an IC20 dose of imatinib or omacetaxine showed differential gene expression for 956 (1.96%) and 3,892 transcripts (7.97%), respectively; 395 of these (0.8%) were significantly influenced by both imatinib and omacetaxine treatment. k-means clustering and DAVID functional annotation showed expression changes in genes related to kinase binding and vacuole-related functions following imatinib treatment, whilst expression changes in genes related to cell division and apoptosis were evident following treatment with omacetaxine. The enrichment scores for these ontologies were very high (mostly >10).
Conclusions

Induction of gene expression changes related to different pathways following imatinib and omacetaxine treatment suggests that the cytotoxicity of such drugs may be differentially tolerated by individuals based on their genetic background.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skeletal muscle, as a consequence of its mass and great capacity for altered metabolism, has a major impact on whole-body metabolic homeostasis and is capable of remarkable adaptation in response to various physiological stimuli, including exercise and dietary intervention. Exercise-induced increases in skeletal muscle mRNA levels of a number of genes have been reported, due to transcriptional activation and/or increased mRNA stability. The cellular adaptations to exercise training appear to be due to the cumulative effects of transient increases in gene transcription after repeated exercise bouts. The relative importance of transcriptional (mRNA synthesis) and translational (mRNA stability or translational efficiency) mechanisms for the training-induced increases in skeletal muscle protein abundance remains to be fully elucidated. Dietary manipulation, and the associated alterations in nutrient availability and hormone levels, can also modify skeletal muscle gene expression, although fewer studies have been reported. A major challenge is to understand how exercise and diet exert their effects on gene and protein expression in skeletal muscle. In relation to exercise, potential stimuli include stretch and muscle tension, the pattern of motor nerve activity and the resultant calcium transients, the energy charge of the cell and substrate availability, oxygen tension and circulating hormones. These are detected by various cellular signaling mechanisms, acting on a range of downstream targets and a wide range of putative transcription factors. A key goal in the years ahead is to identify how alterations at the level of gene expression are coupled to the changes in skeletal muscle phenotype. It is clear that gene expression, although representing a specific site of regulation, is only one step in a complex cascade from the initial stimulus to the final phenotypic adaptation and integrated physiological response.