3 resultados para ABCB1

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ATP-binding cassette family of transporter proteins, subfamily B (MDR/TAP), member 1 (ABCB1) (P-glycoprotein) transporter is a key component of the blood–brain barrier. Many antidepressants are subject to ABCB1 efflux. Functional polymorphisms of ABCB1 may influence central nervous system bioavailability of antidepressants subject to efflux. Single-nucleotide polymorphisms (SNPs) at rs1045642 (C3435T) of ABCB1 have been associated with efflux pump efficiency. This may explain part of the interindividual variation in antidepressant dose needed to remit. Individuals (N=113) with DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition) major depressive disorder (MDD) were treated with escitalopram (ESC) or venlafaxine (VEN) over 8 weeks. The17-item Hamilton Depression Rating Scale was assessed serially, blind to genotype. SNP rs1045642 of ABCB1 along with two SNPs previously reported to be in linkage disequilibrium with it (rs2032582 and rs1128503) were genotyped. Demographic features, clinical features, P450 metabolizer status and 5-HTTLPR (serotonin-transporter-linked promoter region) genotype were controlled for. Carriers of rs1045642 TT needed on average 11 mg of ESC to remit, whereas TC and CC carriers required 24 and 19 mg, respectively (P=0.0001). This equates to a 2.0- (95% confidence interval=1.5–3.4; P<0.001) fold greater ESC dose needed to remit for C carriers compared with TT carriers at rs1045642. Of VEN-treated subjects carrying TT genotype at rs1045642, 73.3% remitted compared with 12.5% for CC genotype (odds ratio=6.69; 95% confidence interval=1.72–25.9, P=0.006). These data suggest that antidepressant dose needed to remit can be predicted by an ABCB1 SNP. This has the potential clinical translation implications for dose selection and remission from MDD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cryptotanshinone (CTS), a major constituent from the roots of Salvia miltiorrhiza (Danshen), is widely used in the treatment of coronary heart disease, stroke and less commonly Alzheimer's disease. Our recent study indicates that CTS is a substrate for Pglycoprotein (PgP/MDR1/ABCB1). This study has investigated the nature of the brain distribution of CTS across the brain-blood barrier (BBB) using several in vitro and in vivo rodent models. A polarized transport of CTS was found in rat primary microvascular endothelial cell (RBMVEC) monolayers, with facilitated efflux from the abluminal side to luminal side. Addition of a PgP (e.g. verapamil and quinidine) or multi-drug resistance protein 1/2 (MRP1/2) inhibitor (e.g. probenecid and MK-571) in both luminal and abluminal sides attenuated the polarized transport. In a bilateral in situ brain perfusion model, the uptake of CTS into the cerebrum increased from 0.52 ± 0.1% at 1 min to 11.13 ± 2.36 ml/100 g tissue at 30 min and was significantly greater than that of sucrose. Co-perfusion of a PgP/MDR1 (e.g. verapamil) or MRP1/2 inhibitor (e.g. probenecid) significantly increased the brain distribution of CTS by 35.1-163.6%. The brain levels of CTS were only about 21% of those in plasma, and were significantly increased when coadministered with verapamil or probenecid in rats. The brain levels of CTS in rats subjected to middle cerebral artery occlusion and rats treated with quinolinic acid (a neurotoxin) were about 2- to 2.5-fold higher than the control rats. Moreover, the brain levels in mdr1a(-/-) and mrp1(-/-) mice were 10.9- and 1.5-fold higher than those in the wild-type mice, respectively. Taken collectively, these findings indicate that PgP and Mrp1 limit the brain penetration of CTS in rodents, suggesting a possible role of PgP and MRP1 in limiting the brain penetration of CTS in patients and causing drug resistance to Danshen therapy and interactions with conventional drugs that are substrates of PgP and MRP1. Further studies are needed to explore the role of other drug transporters in restricting the brain penetration of CTS and the clinical relevance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multidrug ABC transporters such as P-glycoprotein (P-gp/MDR1/ABCB1) and multidrug resistance protein 1 (MRP1/ABCC1) play an important role in the extrusion of drugs from the cell and their overexpression can be a cause of failure of anticancer and antimicrobial chemotherapy. Recently, the mouse P-gp/Abcb1a structure has been determined and this has significantly enhanced our understanding of the structure-activity relationship (SAR) of mammalian ABC transporters. This paper highlights our current knowledge on the structural and functional properties and the SAR of human MRP1/ABCC1. Although the crystal structure of MRP1/ABCC1 has yet to be resolved, the current topological model of MRP1/ABCC1 contains two transmembrane domains (TMD1 and TMD2) each followed by a nucleotide binding domain (NBD) plus a third NH2-terminal TMD0. MRP1/ABCC1 is expressed in the liver, kidney, intestine, brain and other tissues. MRP1/ABCC1 transports a structurally diverse array of important endogenous substances (e.g. leukotrienes and estrogen conjugates) and xenobiotics and their metabolites, including various conjugates, anticancer drugs, heavy metals, organic anions and lipids. Cells that highly express MRP1/ABCC1 confer resistance to a variety of natural product anticancer drugs such as vinca alkaloids (e.g. vincristine), anthracyclines (e.g. etoposide) and epipodophyllotoxins (e.g. doxorubicin and mitoxantrone). MRP1/ABCC1 is associated with tumor resistance which is often caused by an increased efflux and decreased intracellular accumulation of natural product anticancer drugs and other anticancer agents. However, most compounds that efficiently reverse P-gp/ABCB1-mediated multidrug resistance have only low affinity for MRP1/ABCC1 and there are only a few effective and relatively specific MRP1/ABCC1 inhibitors available. A number of site-directed mutagenesis studies, biophysical and photolabeling studies, SAR and QSAR, molecular docking and homology modeling studies have documented the role of multiple residues in determining the substrate specificity and inhibitor selectivity of MRP1/ABCC1. Most of these residues are located in the TMs of TMD1 and TMD2, in particular TMs 4, 6, 7, 8, 10, 11, 14, 16, and 17, or in close proximity to the membrane/cytosol interface of MRP1/ABCC1. The exact transporting mechanism of MRP1/ABCC1 is unclear. MRP1/ABCC1 and other multidrug transporters are front-line mediators of drug resistance in cancers and represent important therapeutic targets in future chemotherapy. The crystal structure of human MRP1/ABCC1 is expected to be resolved in the near future and this will provide an insight into the SAR of MRP1/ABCC1 and allow for rational design of anticancer drugs and potent and selective MRP1/ABCC1 inhibitors.