96 resultados para Sanidade animal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated prey captures in free-ranging adult female Australian fur seals (Arctocephalus pusillus doriferus) using head-mounted 3-axis accelerometers and animal-borne video cameras. Acceleration data was used to identify individual attempted prey captures (APC), and video data were used to independently verify APC and prey types. Results demonstrated that head-mounted accelerometers could detect individual APC but were unable to distinguish among prey types (fish, cephalopod, stingray) or between successful captures and unsuccessful capture attempts. Mean detection rate (true positive rate) on individual animals in the testing subset ranged from 67-100%, and mean detection on the testing subset averaged across 4 animals ranged from 82-97%. Mean False positive (FP) rate ranged from 15-67% individually in the testing subset, and 26-59% averaged across 4 animals. Surge and sway had significantly greater detection rates, but also conversely greater FP rates compared to heave. Video data also indicated that some head movements recorded by the accelerometers were unrelated to APC and that a peak in acceleration variance did not always equate to an individual prey item. The results of the present study indicate that head-mounted accelerometers provide a complementary tool for investigating foraging behaviour in pinnipeds, but that detection and FP correction factors need to be applied for reliable field application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scientists are increasingly coming to realize that oncogenic phenomena are both frequent and detrimental for animals, and must therefore be taken into account when studying the biology of wildlife species and ecosystem functioning. Here, we argue that several behaviours that are routine in an individual's life can be associated with cancer risks, or conversely prevent/cure malignancies and/or alleviate their detrimental consequences for fitness. Although such behaviours are theoretically expected to be targets for natural selection, little attention has been devoted to explore how they influence animal behaviour. This essay provides a summary of these issues as well as an overview of the possibilities offered by this research topic, including possible applications for cancer prevention and treatments in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electronic tags (both biotelemetry and biologging platforms) have informed conservation and resource management policy and practice by providing vital information on the spatial ecology of animals and their environments. However, the extent of the contribution of biological sensors (within electronic tags) that measure an animal's state (e.g., heart rate, body temperature, and details of locomotion and energetics) is less clear. A literature review revealed that, despite a growing number of commercially available state sensor tags and enormous application potential for such devices in animal biology, there are relatively few examples of their application to conservation. Existing applications fell under 4 main themes: quantifying disturbance (e.g., ecotourism, vehicular and aircraft traffic), examining the effects of environmental change (e.g., climate change), understanding the consequences of habitat use and selection, and estimating energy expenditure. We also identified several other ways in which sensor tags could benefit conservation, such as determining the potential efficacy of management interventions. With increasing sensor diversity of commercially available platforms, less invasive attachment techniques, smaller device sizes, and more researchers embracing such technology, we suggest that biological sensor tags be considered a part of the necessary toolbox for conservation. This approach can measure (in real time) the state of free-ranging animals and thus provide managers with objective, timely, relevant, and accurate data to inform policy and decision making.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ecological theory predicts that habitat growth and loss will have different effects on community structure, even if they produce patches of the same size. Despite this, studies on the effects of patchiness are often performed without prior knowledge of the processes responsible for the patchiness. We manipulated artificial seagrass habitat in temperate Australia to test whether fish and crustacean assemblages differed between habitats that formed via habitat loss and habitat growth. Habitat loss treatments (originally 16 m2) and habitat growth treatments (originally 0 m2) were manipulated over 1 week until each reached a final patch size of 4 m2. At this size, each was compared through time (0-14 days after manipulation) with control patches (4 m2 throughout the experiment). Assemblages differed significantly among treatments at 0 and 1 day after manipulation, with differences between growth and loss treatments contributing to most of the dissimilarity. Immediately after the final manipulation, total abundance in habitat loss treatments was 46% and 62% higher than controls and habitat growth treatments, respectively, which suggests that animals crowded into patches after habitat loss. In contrast to terrestrial systems, crowding effects were brief (≤1 day), signifying high connectivity in marine systems. Growth treatments were no different to controls, despite the lower probability of animals encountering patches during the growth phase. Our study shows that habitat growth and loss can cause short-term differences in animal abundance and assemblage structure, even if they produce patches of the same size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most ecological studies require knowledge of animal abundance, but it can be challenging and destructive of habitat to obtain accurate density estimates for cryptic species, such as crustaceans that tunnel deeply into the seafloor, beaches, or mudflats. Such fossorial species are, however, widely used in environmental impact assessments, requiring sampling techniques that are reliable, efficient, and environmentally benign for these species and environments.2.Counting and measuring the entrances of burrows made by cryptic species is commonly employed to index population and body sizes of individuals. The fundamental premise is that burrow metrics consistently predict density and size. Here we review the evidence for this premise. We also review criteria for selecting among sampling methods: burrow counts, visual censuses, and physical collections.3.A simple 1:1 correspondence between the number of holes and population size cannot be assumed. Occupancy rates, indexed by the slope of regression models, vary widely between species and among sites for the same species. Thus, 'average' or 'typical' occupancy rates should not be extrapolated from site- or species specific field validations and then be used as conversion factors in other situations.4.Predictions of organism density made from burrow counts often have large uncertainty, being double to half of the predicted mean value. Whether such prediction uncertainty is 'acceptable' depends on investigators' judgements regarding the desired detectable effect sizes.5.Regression models predicting body size from burrow entrance dimensions are more precise, but parameter estimates of most models are specific to species and subject to site-to-site variation within species.6.These results emphasise the need to undertake thorough field validations of indirect census techniques that include tests of how sensitive predictive models are to changes in habitat conditions or human impacts. In addition, new technologies (e.g. drones, thermal-, acoustic- or chemical sensors) should be used to enhance visual census techniques of burrows and surface-active animals.