122 resultados para Predator


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate change is acknowledged as an emerging threat for top-order marine predators, yet obtaining evidence of impacts is often difficult. In south-eastern Australia, a marine global warming hotspot, evidence suggests that climate change will profoundly affect pinnipeds and seabirds. Long-term data series are available to assess some species' responses to climate. Researchers have measured a variety of chronological and population variables, such as laying dates, chick or pup production, colony-specific abundance and breeding success. Here, we consider the challenges in accurately assessing trends in marine predator data, using long-term data series that were originally collected for other purposes, and how these may be driven by environmental change and variability. In the past, many studies of temporal changes and environmental drivers used linear analyses and we demonstrate the (theoretical) relationship between the magnitude of a trend, its variability, and the duration of a data series required to detect a linear trend. However, species may respond to environmental change in a nonlinear manner and, based on analysis of time-series from south-eastern Australia, it appears that the assumptions of a linear model are often violated, particularly for measures of population size. The commonly measured demographic variables exhibit different degrees of variation, which influences the ability to detect climate signals. Due to their generally lower year-to-year variability, we illustrate that monitoring of variables such as mass and breeding chronology should allow detection of temporal trends earlier in a monitoring programme than observations of breeding success and population size. Thus, establishing temporal changes with respect to climate change from a monitoring programme over a relatively short time period requires careful a priori choice of biological variables. © 2014 Springer-Verlag Berlin Heidelberg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seabird tracking has become an ever more popular tool to aid environmental procedures such as the designation of marine protected areas and environmental impact assessments. However, samples used are usually small and little consideration is given to experimental design and sampling protocol. European shags Phalacrocorax aristotelis were tracked using GPS technology over three breeding seasons and the following foraging trip characteristics: trip duration, trip distance, maximum distance travelled from the colony, size of area used and direction travelled from colony were determined for each foraging trip. The effect of sex, year of study, breeding site, number and age of chicks and the timing of tracking on foraging behaviour were investigated using a General Estimation Equation model. A range of sampling scenarios reflecting likely field sampling were also tested to compare how foraging behaviour differed depending on composition of the sample of birds tracked. Trip distance, trip duration, maximum distance travelled and size of area used were all significantly affected by the breeding site, and the number of chicks a tracked adult was raising. The effect of sex was also seen when examining trip distance, trip duration and the maximum distance travelled. The direction travelled on a foraging trip was also significantly affected by breeding site. This study highlights the importance of sampling regime and the influence that year, sex, age, number of chicks and breeding site can have on the foraging trip characteristics for this coastal feeding seabird. Given the logistical and financial constraints in tracking large numbers of individuals, this study identifies the need for researchers to consider the composition of their study sample to ensure any identified foraging areas are as representative as possible of the whole colony's foraging area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aposematic signal variation is a paradox: predators are better at learning and retaining the association between conspicuousness and unprofitability when signal variation is low. Movement patterns and variable colour patterns are linked in non-aposematic species: striped patterns generate illusions of altered speed and direction when moving linearly, affecting predators' tracking ability; blotched patterns benefit instead from unpredictable pauses and random movement. We tested whether the extensive colour-pattern variation in an aposematic frog is linked to movement, and found that individuals moving directionally and faster have more elongated patterns than individuals moving randomly and slowly. This may help explain the paradox of polymorphic aposematism: variable warning signals may reduce protection, but predator defence might still be effective if specific behaviours are tuned to specific signals. The interacting effects of behavioural and morphological traits may be a key to the evolution of warning signals. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prey distribution, patch size, and the presence of conspecifics are important factors influencing a predator's feeding tactics, including the decision to feed individually or socially. Little is known about group behaviour in seabirds as they spend most of their lives in the marine environment where it is difficult to observe their foraging activities. In this study, we report on at-sea foraging associations of little penguins (Eudyptula minor) during the breeding season. Individuals could be categorised as (1) not associating; (2) associating when departing from and/or returning to the colony; or (3) at sea when travelling, diving or performing synchronised dives. Out of 84 separate foraging tracks, 58 (69.0%) involved associations with conspecifics. Furthermore, in a total of 39 (46.4%), individuals were found to dive during association and in 32 (38.1%), individuals were found to exhibit synchronous diving. These behaviours suggest little penguins forage in groups, could synchronise their underwater movements and potentially cooperate to concentrate their small schooling prey.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The endemic Pacific gull (Larus pacificus) is Australia's largest larid, and though little is currently known of its foraging ecology, its size and wide distribution suggest that it may play an important role within the marine environment. In the present study, regurgitate pellets collected from Seal Island in northern Bass Strait were used to compare intra- and interannual trends in diet composition. The main taxa identified in pellets were the common diving-petrel (Pelecanoides urinatrix), leatherjacket species (Family Monacanthidae), short-tailed shearwater (Puffinus tenuirostris) and mirror bush (Coprosma repens). Analysis of similarity (ANOSIM) identified no significant differences in numerical abundance of the dominant prey species between years, suggesting that the prey base in this region is temporally consistent or that the gulls consume low enough numbers to be unaffected by fluctuation in prey populations. Diving-petrels were consumed in consistently high numbers, suggesting the gulls may be an important predator of this species, or that the gulls are particularly skilled at foraging for them. © CSIRO 2014.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we provide the supplementary data collection for the upcoming publication of the larval transcriptomic resource for the Northern Pacific Seastar, Asterias amurensis, an invasive marine predator in Australia. A. amurensis is ranked among the most potentially damaging invasive species in Australia and has recently expanded its range along the eastern mainland coast of Australia. As a first step to study the genetic basis of adaptive change and other important evolutionary processes during a contemporary invasive range expansion we de novo assembled and characterised the transcriptome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Successful Marine Spatial Planning depends upon the identification of areas with high importance for particular species, ecosystems or processes. For seabirds, advancements in biologging devices have enabled us to identify these areas through the detailed study of at-sea behaviour. However, in many cases, only positional data are available and the presence of local biological productivity and hence seabird foraging behaviour is inferred from these data alone, under the untested assumption that foraging activity is more likely to occur in areas where seabirds spend more time. We fitted GPS devices and accelerometers to northern gannets Morus bassanus and categorised the behaviour of individuals outside the breeding colony as plunge diving, surface foraging, floating and flying. We then used the locations of foraging events to test the efficiency of 2 approaches: time-in-area and kernel density (KD) analyses, which are widely employed to detect highly-used areas and interpret foraging behaviour from positional data. For KD analyses, the smoothing parameter (h) was calculated using the ad hoc method (KDad hoc), and KDh=9.1, where h = 9.1 km, to designate core foraging areas from location data. A high proportion of foraging events occurred in core foraging areas designated using KDad hoc, KDh=9.1, and time-in-area. Our findings demonstrate that foraging activity occurs in areas where seabirds spend more time, and that both KD analysis and the time-in-area approach are equally efficient methods for this type of analysis. However, the time-in-area approach is advantageous in its simplicity, and in its ability to provide the shapes commonly used in planning. Therefore, the time-in-area approach can be used as a simple way of using seabirds to identify ecologically important locations from both tracking and survey data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For a full understanding of prey availability, it is necessary to study risk-taking behaviour of the prey. Fiddler crabs are ideally suited for such a study, as they have to leave their safe burrow to feed on the surface of the intertidal flats during low tide, thereby exposing themselves to avian predators. A study in an intertidal area along the coast of Mauritania showed that small crabs always stayed in the vicinity of their burrow, but large crabs wandered in large flocks (also referred to as droves) to feed on sea-grass beds downshore. Transplanting downshore feeding substrate to the burrowing zone of the small crabs proved that they too preferred to feed on it. Since small crabs can be preyed upon by more species of birds, this suggests that the decision not to leave the burrowing zone might be related to the risk of being fed upon by birds. We calculated predation risk from measurements on the density and feeding activity of the crabs, as well as the feeding density, the intake rate and the size selection of the avian predators. Per hour on the surface, crabs in a flock were more at risk than crabs feeding near their burrow. Thus, though flocking crabs may have benefited from ‘swamping the predator’ by emerging in maximum numbers during some tides only, this did not reduce their risk of predation below that of non-flocking crabs. Furthermore we found that irrespective of activity, large crabs suffered a higher mortality per tide from avian predators than small crabs. This suggests that large crabs could not sufficiently reduce their foraging time to compensate for the increased risk while foraging in a flock, even though they probably experienced better feeding conditions than small crabs staying near their burrow. The greater energy demands of large crabs were reflected in a greater surface area grazed. Thus, with increasing size a fiddler crab has to feed further away from its burrow and so may derive less protection from staying near to it. It seems that growing big does not reduce the risk of predation for fiddler crabs, as it does in many other species with indeterminate growth. As in such species, the most probable advantage of growing big is increased mating success. Ultimately, therefore, prey availability must be understood from the life-history decisions of the prey species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Predators can affect prey populations and, via trophic cascades, predators can indirectly impact resource populations (2 trophic levels below the predator) through consumption of prey (density-mediated indirect effects; DMIEs) and by inducing predator-avoidance behavior in prey (trait-mediated indirect effects; TMIEs). Prey often employ multiple predator-avoidance behaviors, such as dispersal or reduced foraging activity, but estimates of TMIEs are usually on individual behaviors. We assessed direct and indirect predator effects in a mesocosm experiment using a marine food chain consisting of a predator (toadfish--Opsanus tau), prey (mud crab--Panopeus herbstii) and resource (ribbed musse--Geukensia demissa). We measured dispersal and foraging activity of prey separately by manipulating both the presence and absence of the predator, and whether prey could or could not disperse into a predator-free area. Consumption of prey was 9 times greater when prey could not disperse, probably because mesocosm boundaries increased predator capture success. Although predator presence did not significantly affect the number of crabs that emigrated, the presence of a predator decreased resource consumption by prey, which resulted in fewer resources consumed for each prey that emigrated in the presence of a predator, and reduced the overall TMIE. When prey were unable to disperse, TMIEs on mussel survival were 3 times higher than the DMIEs. When prey were allowed to disperse, the TMIEs on resource survival increased to 11-times the DMIEs. We found that restricting the ability of prey to disperse, or focusing on only one predator-avoidance behavior, may be underestimating TMIEs. Our results indicate that the relative contribution of behavior and consumption in food chain dynamics will depend on which predator-avoidance behaviors are allowed to occur and measured.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dingoes/wild dogs (Canis dingo/familiaris) and red foxes (Vulpes vulpes) are widespread carnivores in southern Australia and are controlled to reduce predation on domestic livestock and native fauna. We used the occurrence of food items in 5875 dingo/wild dog scats and 11,569 fox scats to evaluate interspecific and geographic differences in the diets of these species within nine regions of Victoria, south-eastern Australia. The nine regions encompass a wide variety of ecosystems. Diet overlap between dingoes/wild dogs and foxes varied among regions, from low to near complete overlap. The diet of foxes was broader than dingoes/wild dogs in all but three regions, with the former usually containing more insects, reptiles and plant material. By contrast, dingoes/wild dogs more regularly consumed larger mammals, supporting the hypothesis that niche partitioning occurs on the basis of mammalian prey size. The key mammalian food items for dingoes/wild dogs across all regions were black wallaby (Wallabia bicolor), brushtail possum species (Trichosurus spp.), common wombat (Vombatus ursinus), sambar deer (Rusa unicolor), cattle (Bos taurus) and European rabbit (Oryctolagus cuniculus). The key mammalian food items for foxes across all regions were European rabbit, sheep (Ovis aries) and house mouse (Mus musculus). Foxes consumed 6.1 times the number of individuals of threatened Critical Weight Range native mammal species than did dingoes/wild dogs. The occurrence of intraguild predation was asymmetrical; dingoes/wild dogs consumed greater biomass of the smaller fox. The substantial geographic variation in diet indicates that dingoes/wild dogs and foxes alter their diet in accordance with changing food availability. We provide checklists of taxa recorded in the diets of dingoes/wild dogs and foxes as a resource for managers and researchers wishing to understand the potential impacts of policy and management decisions on dingoes/wild dogs, foxes and the food resources they interact with.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Predator exclosures ('nest cages') around nests are increasingly used to enhance hatching success of declining ground-nesting birds. However, such exclosures are contentious and have been suggested to have detrimental effects on the species which they aim to protect. This study examines whether exclosures increase physiological stress of incubating birds, a hitherto unrecognised and untested potential drawback of exclosures. Red-capped plover Charadrius ruficapillus hatching success was radically altered and significantly higher for nests with exclosures (96.2%) compared with those without (6.8%). Chronic physiological stress in parents (as measured by the heterophil/lymphocyte [H/L] ratio in blood) did not vary between nests with and without exclosures, or between the sexes. However the absence of vegetative cover at the nest site was associated with a 62.7% elevation in H/L ratio, indicating that incubating birds which place their nests in the open are subject to increased levels of chronic stress. The results from this study demonstrate the fundamental importance of predation for the nesting success of this species and confirm that chronic stress levels are not a detrimental side effect of exclosure use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Capsule Responses of animals to anthropogenic disturbances are often quantified using flight-initiation distance, the distance at which an animal flees a stimulus such as a person. We showed that the height of 20 researchers, selected to represent a diversity of heights, did not affect estimates of flight-initiation distance of Black Swans Cygnus atratus, suggesting that the height of humans used to test hypotheses of flight-initiation distances is not a confounding variable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Egg predation is a major cause of reproductive failure among birds, and can compromise the viability of affected populations. Some egg predators aggregate near colonially breeding birds to exploit the seasonal increase of prey resources. We investigated spatial and temporal variations in the abundance of an egg predator (little raven Corvus mellori; Corvidae) to identify whether ravens aggregate spatially or temporally to coincide with any of three potential prey species: burrow-nesting little penguin (Eudyptula minor; Spheniscidae), short-tailed shearwater (Ardenna tenuirostris; Procellariidae), and surface-nesting silver gull (Chroicocephalus novaehollandiae; Laridae). We derived spatially explicit density estimates of little ravens using distance sampling along line transects throughout a calendar year, which encompassed little penguin, short-tailed shearwater and silver gull breeding and non-breeding seasons. High raven abundance coincided temporally with penguin and gull egg laying periods but not with that of shearwaters. The spatial distribution of raven density corresponded with the little penguin colony but not with shearwater or gull colonies. Thus, the presence of little penguin eggs in burrows correlated strongly with little raven activity, and this implies that little ravens may have learnt to exploit the plentiful subsurface food resource of little penguin eggs. Corvid management may be required to maintain the viability of this socially and economically important penguin colony.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phenotypic variation and individual experience can create behavioural and/or dietary variation within a population. This may reduce intra-specific competition, creating a buffer to environmental change. This study examined how intrinsic variation affects foraging behaviour of Australian fur seals. Foraging movements of 29 female Australian fur seals were recorded using FastLoc GPS and dive behaviour recorders. For each individual, body mass, flipper length and axis length were recorded, a tooth was sampled to determine age, and milk was collected for diet analysis. Clustering of fatty acid dietary analysis revealed 5 distinct groups in the population. Behaviour was described using 19 indices, which were then reduced to 7 principal components (>80% of the behavioural variation). Bayesian mixed effect models were developed to describe the relationship between these components and intrinsic variation. No association was found between diet and age or body shape; however, age had a negative relationship with component 1 (27% of variation). Older females spent less time at-sea and foraged nearer to the colony. Age had an effect on component 5 (7% of variation), which represented haul-outs and dive depth; older females made fewer visits to haul-out sites and dived deeper to the benthos. This suggests that as animals age they are able to utilise prior knowledge to exploit nearby foraging sites that younger animals are either unaware of, or have yet to gain the experience required to efficiently utilise. Mass had a negative effect on components representing the directedness of a foraging trip, suggesting heavier individuals were more likely to travel directly to a foraging site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is no conclusive evidence of any nonhuman animal using the sun as part of its predation strategy. Here, we show that the world's largest predatory fish-the white shark (Carcharodon carcharias)-exploits the sun when approaching baits by positioning the sun directly behind them. On sunny days, sharks reversed their direction of approach along an east-west axis from morning to afternoon but had uniformly distributed approach directions during overcast conditions. These results show that white sharks have sufficient behavioral flexibility to exploit fluctuating environmental features when predating. This sun-tracking predation strategy has a number of potential functional roles, including improvement of prey detection, avoidance of retinal overstimulation, and predator concealment.