131 resultados para membrane lysis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This sub-collection is the result of an investigation into the mechanism of organic fouling in membrane filtration processes. In this experiment, poly(vinylidene fluoride) (PVDF) membranes were used to filter two types of organic foulants, protein and sodium alginate with a concentration of 50mg/l and 40 mg/l, respectively, from suspension in a dead-end filtration cell. These model foulants were stained with fluorescent dyes before filtration. This dataset contains a stack of images of the fouling layer on the PVDF membrane surface captured by a confocal laser scanning microscope (CLSM) and its associated acquisition software. This dataset would be useful to researchers who are investigating the membrane organic fouling mechanism so that new membrane materials and new anti-fouling surface treatment technologies can be developed for water and wastewater industry in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This collection is the result of an investigation into the backwashing efficiency of polycarbonate (PC) membrane fouled by two types of organic foulants, protein and yeast. In this experiment, polycarbonate (PC) membrane was used to filter those organic foulants from suspensions in a dead-end stirred cell. The organic foulants were stained with fluorescent dyes before filtration. After filtration, the PC membrane was backwashed. Consequently, a stack of images were captured from the fouling layers on the PC membrane surface using confocal laser scanning microscope (CLSM) and its associated image acquisition software. It contains image data of polycarbonate (PC) membranes' fouling layer when two types of organic foulants (protein and yeast) present. By comparing with the same membrane without backwashing, the efficiency of backwashing was computed. This data collection would be useful to researchers evaluating the backwashing efficiency of PC membrane in order to optimize frequency and operational conditions of backwashing by membrane materials and by water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reverse osmosis (RO) is the most preferable process for water recovery from secondary effluent (SE) because of its higher rejection of impurities with lower associated cost and higher quality of product. Fouling still is a major challenge during the water recovery due to higher contaminant loadings in SE and high rejection capability of this membrane. The presence of suspended solids, colloidal and organic matters, and high level of biological activities in SE further elevate fouling potentiality. This review was performed to identify major foulants causing hindrance in sustainable application of reverse osmosis and to present available pre-treatment options for these foulants. There are four fouling types present in RO namely; bio-fouling, inorganic/scaling, organic, and particulate fouling. Among them; bio-fouling is less understood but dominant since the pre-treatment options are not well developed. Other fouling mechanisms have been overcome by well developed pre-treatments. The major foulants for RO are dissolved and macromolecular organic substances, sparingly soluble inorganic compounds, colloidal and suspended particles, and micro-organisms. Some of these potential fouling water quality parameters (PFWQPs) are interrelated with each others such as electrical conductivity is a surrogate measure of total dissolved solids with established stable relationship. Most of these PFWQPs such as total suspended solids, turbidity, chemical oxygen demand can be removed by conventional pre-treatment; some such as colloidal particles and micro-organisms by modern options and even others such as endocrine disrupting compounds, pharmaceutical and personal care products are still challenging for current pre-treatments. These foulants need to be identified properly to integrate appropriate pre-treatments for minimizing fouling potentiality to increase water recovery at minimal costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This collection is the result of an investigation into the backwashing efficiency of polycarbonate (PC) membrane fouled by two types of organic foulants, sodium alginate and yeast. In this experiement, polycarbonate (PC) membrane was used to filter those organic foulants from suspensions in a dead-end stirred cell. The organic foulants were stained with fluorescent dyes before filtration. After filtration, the PC membrane was backwashed. Consequently, a stack of images were captured from the fouling layers on the PC membrane surface using confocal laser scanning microscope (CLSM) and its associated image acquisition software. It contains image data of polycarbonate (PC) membranes' fouling layer when two types of organic foulants (sodium alginate and yeast) present. By comparing with the same membrane without backwashing, the efficiency of backwashing was computed. This data collection would be useful to researchers evaluating the backwashing efficiency of PC membrane in order to optimize frequency and operational conditions of backwashing by membrane materials and by water..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This sub-collection is the result of an investigation into the mechanism of organic fouling in membrane filtration processes. In this experiment, poly(vinylidene fluoride) (PVDF) membranes were used to filter three types of organic foulants, yeast, protein and sodium alginate with a concentration of 50mg/l, 40mg/l and 20 mg/l, respectively, from suspension in a dead-end filtration cell. These model foulants were stained with fluorescent dyes before filtration. This dataset contains a stack of images of the fouling layer on the PVDF membrane surface captured by a confocal laser scanning microscope (CLSM) and its associated acquisition software. This dataset would be useful to researchers who are investigating the membrane organic fouling mechanism so that new membrane materials and new anti-fouling surface treatment technologies can be developed for water and wastewater industry in the future .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gram-negative bacterial peptidoglycan is specifically recognized by the host intracellular sensor NOD1, resulting in the generation of innate immune responses. Although epithelial cells are normally refractory to external stimulation with peptidoglycan, these cells have been shown to respond in a NOD1-dependent manner to Gram-negative pathogens that can either invade or secrete factors into host cells. In the present work, we report that Gram-negative bacteria can deliver peptidoglycan to cytosolic NOD1 in host cells via a novel mechanism involving outer membrane vesicles (OMVs). We purified OMVs from the Gram-negative mucosal pathogens: Helicobacter pylori, Pseudomonas aeruginosa and Neisseria gonorrhoea and demonstrated that these peptidoglycan containing OMVs upregulated NF-κB and NOD1-dependent responses in vitro. These OMVs entered epithelial cells through lipid rafts thereby inducing NOD1-dependent responses in vitro. Moreover, OMVs delivered intragastrically to mice-induced innate and adaptive immune responses via a NOD1-dependent but TLR-independent mechanism. Collectively, our findings identify OMVs as a generalized mechanism whereby Gram-negative bacteria deliver peptidoglycan to cytosolic NOD1. We propose that OMVs released by bacteria in vivo may promote inflammation and pathology in infected hosts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstracts: Lipid rafts are defined as specialized, dynamic microdomains that can be found in plasma membrane, and they are enriched with cholesterol and sphingolipids. Since lipid rafts’ first debut in the mid 1990’s, their existence, function and biological relevance have been a subject of intense scrutiny within the scientific community. Throughout this debate, we have learned a great deal regarding how cargos (both pathogens and cellular factors) are transported into and out of the cell through raft-dependent or raft-independent pathways. It is now apparent that a number of toxins, bacterial-, and viral-pathogens are able to exploit cholesterol and/or lipid rafts to gain a foot hold in their target hosts. The objective of this review is to describe our current appreciation on how selected pathogens utilise cholesterol and/or lipid rafts to support their propagation and to speculate on how some of these observations can be explored for the development of novel strategies that target plasma membrane lipids to control the spread of these viral- and bacterial-pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CrN films on a bipolar plate in polymer electrolyte membrane fuel cells have several advantages owing to their excellent corrosion resistance and mechanical properties. Three CrN samples deposited at various radio frequency (RF) powers by RF magnetron sputtering were evaluated under potentiodynamic, potentiostatic and electrochemical impedance spectroscopy conditions. The electrochemical impedance spectroscopy data were monitored for 168 h in a corrosive environment at 70 °C to determine the coating performance at +600 mVSCE under simulated cathodic conditions in a polymer electrolyte membrane fuel cell. The electrochemical behavior of the coatings increased with decreasing RF power. CrN films on the AISI 316 stainless steel substrate showed high protective efficiency and charge transfer resistance, i.e. increasing corrosion resistance with decreasing RF power. X-ray diffraction confirmed the formation of a CrN(200) preferred orientation at low RF power.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel sensitive humidity nanosensor based on Na1-doped ZnO nanofiber membrane has been prepared via electrospinning and calcination. The product was characterized by scanning electron microscopy and X-ray diffraction. During the whole relative humidity (11%–95%) measurement, the response and recovery time is about 3 and 6 s, respectively, with good linearity, and reproducibility. These remarkable and sensitive sensing performances make our product a good candidate in fabricating humidity sensors.