96 resultados para GENETIC ALGORITHM


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, prediction interval (PI)-based modelling techniques are introduced and applied to capture the nonlinear dynamics of a polystyrene batch reactor system. Traditional NN models are developed using experimental datasets with and without disturbances. Simulation results indicate that traditional NNs cannot properly handle disturbances in reactor data and demonstrate a poor forecasting performance, with an average MAPE of 22% in the presence of disturbances. The lower upper bound estimation (LUBE) method is applied for the construction of PIs to quantify uncertainties associated with forecasts. The simulated annealing optimization technique is employed to adjust NN parameters for minimization of an innovative PI-based cost function. The simulation results reveal that the LUBE method generates quality PIs without requiring prohibitive computations. As both calibration and sharpness of PIs are practically and theoretically satisfactory, the constructed PIs can be used as part of the decision-making and control process of polymerization reactors. © 2014 The Institution of Chemical Engineers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper introduces a new multi-output interval type-2 fuzzy logic system (MOIT2FLS) that is automatically constructed from unsupervised data clustering method and trained using heuristic genetic algorithm for a protein secondary structure classification. Three structure classes are distinguished including helix, strand (sheet) and coil which correspond to three outputs of the MOIT2FLS. Quantitative properties of amino acids are used to characterize the twenty amino acids rather than the widely used computationally expensive binary encoding scheme. Amino acid sequences are parsed into learnable patterns using a local moving window strategy. Three clustering tasks are performed using the adaptive vector quantization method to derive an equal number of initial rules for each type of secondary structure. Genetic algorithm is applied to optimally adjust parameters of the MOIT2FLS with the purpose of maximizing the Q3 measure. Comprehensive experimental results demonstrate the strong superiority of the proposed approach over the traditional methods including Chou-Fasman method, Garnier-Osguthorpe-Robson method, and artificial neural network models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper introduces a new non-parametric method for uncertainty quantification through construction of prediction intervals (PIs). The method takes the left and right end points of the type-reduced set of an interval type-2 fuzzy logic system (IT2FLS) model as the lower and upper bounds of a PI. No assumption is made in regard to the data distribution, behaviour, and patterns when developing intervals. A training method is proposed to link the confidence level (CL) concept of PIs to the intervals generated by IT2FLS models. The new PI-based training algorithm not only ensures that PIs constructed using IT2FLS models satisfy the CL requirements, but also reduces widths of PIs and generates practically informative PIs. Proper adjustment of parameters of IT2FLSs is performed through the minimization of a PI-based objective function. A metaheuristic method is applied for minimization of the non-linear non-differentiable cost function. Performance of the proposed method is examined for seven synthetic and real world benchmark case studies with homogenous and heterogeneous noise. The demonstrated results indicate that the proposed method is capable of generating high quality PIs. Comparative studies also show that the performance of the proposed method is equal to or better than traditional neural network-based methods for construction of PIs in more than 90% of cases. The superiority is more evident for the case of data with a heterogeneous noise. © 2014 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The performances of three advanced non-linear controllers are analyzed for the optimal set point tracking of styrene free radical polymerization (FRP) in batch reactors. The three controllers are the artificial neural network-based MPC (NN-MPC), the artificial fuzzy logic controller (FLC) as well as the generic model controller (GMC). A recently developed hybrid model (Hosen et al., 2011a. Asia-Pac. J. Chem. Eng. 6(2), 274) is utilized in the control study to design and tune the proposed controllers. The optimal minimum temperature profiles are determined using the Hamiltonian maximum principle. Different types of disturbances are introduced and applied to examine the stability of controller performance. The experimental studies revealed that the performance of the NN-MPC is superior to that of FLC and GMC. © 2013 The Institution of Chemical Engineers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The complexity and level of uncertainty present in operation of power systems have significantly grown due to penetration of renewable resources. These complexities warrant the need for advanced methods for load forecasting and quantifying uncertainties associated with forecasts. The objective of this study is to develop a framework for probabilistic forecasting of electricity load demands. The proposed probabilistic framework allows the analyst to construct PIs (prediction intervals) for uncertainty quantification. A newly introduced method, called LUBE (lower upper bound estimation), is applied and extended to develop PIs using NN (neural network) models. The primary problem for construction of intervals is firstly formulated as a constrained single-objective problem. The sharpness of PIs is treated as the key objective and their calibration is considered as the constraint. PSO (particle swarm optimization) enhanced by the mutation operator is then used to optimally tune NN parameters subject to constraints set on the quality of PIs. Historical load datasets from Singapore, Ottawa (Canada) and Texas (USA) are used to examine performance of the proposed PSO-based LUBE method. According to obtained results, the proposed probabilistic forecasting method generates well-calibrated and informative PIs. Furthermore, comparative results demonstrate that the proposed PI construction method greatly outperforms three widely used benchmark methods. © 2014 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traffic signal controlling is one of the solutions to reduce the traffic congestion in cities. To set appropriate green times for traffic signal lights, we have applied Adaptive Neuro-Fuzzy Inference System (ANFIS) method in traffic signal controllers. ANFIS traffic signal controller is used for controlling traffic congestion of a single intersection with the purpose of minimizing travel delay time. The ANFIS traffic controller is an intelligent controller that learns to set an appropriate green time for each phase of traffic signal lights at the start of the phase and based on the traffic information. The controller uses genetic algorithm to tune ANFIS parameters during learning time. The results of the experiments show higher performance of the ANFIS traffic signal controller compared to three other traffic controllers that are developed as benchmarks. One of the benchmarks is GA-FLC (Araghi et al., 2014), next one is a fixed-FLC, and a fixed-time controller with three different values for green phase. Results show the higher performance of ANFIS controller.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A condition monitoring system for induction motors using a hybrid Fuzzy Min-Max (FMM) neural network and Genetic Algorithm (GA) is presented in this paper. Two types of experiments, one from the finite element method and another from real laboratory tests of broken rotor bars in an induction motor are conducted. The induction motor with broken rotor bars is operated under different load conditions. FMM is first used for learning and distinguishing between a healthy motor and one with broken rotor bars. The GA is then utilized for extracting fuzzy if-then rules using the don’t care approach in minimizing the number of rules. The results clearly demonstrate the effectiveness of the hybrid FMM-GA model in condition monitoring of broken rotor bars in induction motors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper aims at optimally adjusting a set of green times for traffic lights in a single intersection with the purpose of minimizing travel delay time and traffic congestion. Neural network (NN) and fuzzy logic system (FLS) are two methods applied to develop intelligent traffic timing controller. For this purpose, an intersection is considered and simulated as an intelligent agent that learns how to set green times in each cycle based on the traffic information. The training approach and data for both these learning methods are similar. Both methods use genetic algorithm to tune their parameters during learning. Finally, The performance of the two intelligent learning methods is compared with the performance of simple fixed-time method. Simulation results indicate that both intelligent methods significantly reduce the total delay in the network compared to the fixed-time method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

  This paper aims at optimally adjusting a set of green times for traffic lights in a single intersection with the purpose of minimizing travel delay time and traffic congestion. Fuzzy logic system (FLS) is the method applied to develop the intelligent traffic timing controller. For this purpose, an intersection is considered and simulated as an intelligent agent that learns how to set green times in each cycle based on the traffic information. The FLS controller (FLC) uses genetic algorithm to tune its parameters during learning phase. Finally, The performance of the intelligent FLC is compared with the performance of a FLC with predefined parameters and three simple fixed-time controller. Simulation results indicate that intelligent FLC significantly reduces the total delay in the network compared to the fixed-time method and FLC with manual parameter setting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The solutions to Traveling Salesman Problem can be widely applied in many real-world problems. Ant colony optimization algorithms can provide an approximate solution to a Traveling Salesman Problem. However, most ant colony optimization algorithms suffer premature convergence and low convergence rate. With these observations in mind, a novel ant colony system is proposed, which employs the unique feature of critical tubes reserved in the Physaurm-inspired mathematical model. A series of experiments are conducted, which are consolidated by two realworld Traveling Salesman Problems. The experimental results show that the proposed new ant colony system outperforms classical ant colony system, genetic algorithm, and particle swarm optimization algorithm in efficiency and robustness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A wide variety of evolutionary optimization algorithms have been used by researcher for optimal design of shell and tube heat exchangers (STHX). The purpose of optimization is to minimize capital and operational costs subject to efficiency constraints. This paper comprehensively examines performance of genetic algorithm (GA) and cuckoo search (CS) for solving STHX design optimization. While GA has been widely adopted in the last decade for STHX optimal design, there is no report on application of CS method for this purpose. Simulation results in this paper demonstrate that CS greatly outperforms GA in terms of finding admissible and optimal configurations for STHX. It is also found that CS method not only has a lower computational requirement, but also generates the most consistent results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The maximum a posteriori assignment for general structure Markov random fields is computationally intractable. In this paper, we exploit tree-based methods to efficiently address this problem. Our novel method, named Tree-based Iterated Local Search (T-ILS), takes advantage of the tractability of tree-structures embedded within MRFs to derive strong local search in an ILS framework. The method efficiently explores exponentially large neighborhoods using a limited memory without any requirement on the cost functions. We evaluate the T-ILS on a simulated Ising model and two real-world vision problems: stereo matching and image denoising. Experimental results demonstrate that our methods are competitive against state-of-the-art rivals with significant computational gain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The penetration of intermittent renewable energy sources (IRESs) into power grids has increased in the last decade. Integration of wind farms and solar systems as the major IRESs have significantly boosted the level of uncertainty in operation of power systems. This paper proposes a comprehensive computational framework for quantification and integration of uncertainties in distributed power systems (DPSs) with IRESs. Different sources of uncertainties in DPSs such as electrical load, wind and solar power forecasts and generator outages are covered by the proposed framework. Load forecast uncertainty is assumed to follow a normal distribution. Wind and solar forecast are implemented by a list of prediction intervals (PIs) ranging from 5% to 95%. Their uncertainties are further represented as scenarios using a scenario generation method. Generator outage uncertainty is modeled as discrete scenarios. The integrated uncertainties are further incorporated into a stochastic security-constrained unit commitment (SCUC) problem and a heuristic genetic algorithm is utilized to solve this stochastic SCUC problem. To demonstrate the effectiveness of the proposed method, five deterministic and four stochastic case studies are implemented. Generation costs as well as different reserve strategies are discussed from the perspectives of system economics and reliability. Comparative results indicate that the planned generation costs and reserves are different from the realized ones. The stochastic models show better robustness than deterministic ones. Power systems run a higher level of risk during peak load hours.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new portfolio risk measure that is the uncertainty of portfolio fuzzy return is introduced in this paper. Beyond the well-known Sharpe ratio (i.e., the reward-to-variability ratio) in modern portfolio theory, we initiate the so-called fuzzy Sharpe ratio in the fuzzy modeling context. In addition to the introduction of the new risk measure, we also put forward the reward-to-uncertainty ratio to assess the portfolio performance in fuzzy modeling. Corresponding to two approaches based on TM and TW fuzzy arithmetic, two portfolio optimization models are formulated in which the uncertainty of portfolio fuzzy returns is minimized, while the fuzzy Sharpe ratio is maximized. These models are solved by the fuzzy approach or by the genetic algorithm (GA). Solutions of the two proposed models are shown to be dominant in terms of portfolio return uncertainty compared with those of the conventional mean-variance optimization (MVO) model used prevalently in the financial literature. In terms of portfolio performance evaluated by the fuzzy Sharpe ratio and the reward-to-uncertainty ratio, the model using TW fuzzy arithmetic results in higher performance portfolios than those obtained by both the MVO and the fuzzy model, which employs TM fuzzy arithmetic. We also find that using the fuzzy approach for solving multiobjective problems appears to achieve more optimal solutions than using GA, although GA can offer a series of well-diversified portfolio solutions diagrammed in a Pareto frontier.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper introduces an automated medical data classification method using wavelet transformation (WT) and interval type-2 fuzzy logic system (IT2FLS). Wavelet coefficients, which serve as inputs to the IT2FLS, are a compact form of original data but they exhibits highly discriminative features. The integration between WT and IT2FLS aims to cope with both high-dimensional data challenge and uncertainty. IT2FLS utilizes a hybrid learning process comprising unsupervised structure learning by the fuzzy c-means (FCM) clustering and supervised parameter tuning by genetic algorithm. This learning process is computationally expensive, especially when employed with high-dimensional data. The application of WT therefore reduces computational burden and enhances performance of IT2FLS. Experiments are implemented with two frequently used medical datasets from the UCI Repository for machine learning: the Wisconsin breast cancer and Cleveland heart disease. A number of important metrics are computed to measure the performance of the classification. They consist of accuracy, sensitivity, specificity and area under the receiver operating characteristic curve. Results demonstrate a significant dominance of the wavelet-IT2FLS approach compared to other machine learning methods including probabilistic neural network, support vector machine, fuzzy ARTMAP, and adaptive neuro-fuzzy inference system. The proposed approach is thus useful as a decision support system for clinicians and practitioners in the medical practice. copy; 2015 Elsevier B.V. All rights reserved.