89 resultados para Brown Trout


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Largely attributable to concerns surrounding sustainability, the utilisation of omega-3 long-chain polyunsaturated fatty acid-rich (n-3 LC-PUFA) fish oils in aquafeeds for farmed fish species is an increasingly concerning issue. Therefore, strategies to maximise the deposition efficiency of these key health beneficial fatty acids are being investigated. The present study examined the effects of four vegetable-based dietary lipid sources (linseed, olive, palm and sunflower oil) on the deposition efficiency of n-3 LC-PUFA and the circulating blood plasma concentrations of the appetite-regulating hormones, leptin and ghrelin, during the grow-out and finishing phases in rainbow trout culture. Minimal detrimental effects were noted in fish performance; however, major modifications were apparent in tissue fatty acid compositions, which generally reflected that of the diet. These modifications diminished somewhat following the fish oil finishing phase, but longer-lasting effects remained evident. The fatty acid composition of the alternative oils was demonstrated to have a modulatory effect on the deposition efficiency of n-3 LC-PUFA and on the key endocrine hormones involved in appetite regulation, growth and feed intake during both the grow-out and finishing phases. In particular, n-6 PUFA (sunflower oil diet) appeared to ‘spare’ the catabolism of n-3 LC-PUFA and, as such, resulted in the highest retention of these fatty acids, ultimately highlighting new nutritional approaches to maximise the maintenance of the qualitative benefits of fish oils when they are used in feeds for aquaculture species.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 The major findings established a mouse brown adipose tissue (BAT)-enriched miRNA profile conserved in human BAT and predicted to target genes potentially involved in growth and development. The present results also identified a human skeletal muscle-derived CD34+ cell population with the capacity to differentiate into brown adipocytes in vitro. These CD34+ expressed common miRNAs to mouse and human BAT. Finally these findings show an up-regulation of 4 miRNAs in human adult skeletal muscle following cold exposure. These miRNAs were also present in mouse and human BAT as well as in CD34+ brown adipocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known that fatty acids (FA) regulate lipid metabolism by modulating the expression of numerous genes. In order to gain a better understanding of the effect of individual FA on lipid metabolism related genes in rainbow trout (Oncorhynchus mykiss), an in vitro time-course study was implemented where twelve individual FA (butyric 4:0; caprylic 8:0; palmitic (PAM) 16:0; stearic (STA) 18:0; palmitoleic16:1n-7; oleic 18:1n-9; 11-cis-eicosenoic 20:1n-9; linoleic (LNA) 18:2n-6; α-linolenic (ALA) 18:3n-3; eicosapentenoic (EPA) 20:5n-3; docosahexaenoic (DHA) 22:6n-3; arachidonic (ARA) 20:4n-6) were incubated in rainbow trout liver slices. The effect of FA administration over time was evaluated on the expression of leptin, PPARα and CPT-1 (lipid oxidative related genes). Leptin mRNA expression was down regulated by saturated fatty acids (SFA) and LNA, and was up regulated by monounsaturated fatty acids (MUFA) and long chain PUFA, whilst STA and ALA had no effect. PPARα and CPT-1mRNA expression were up regulated by SFA, MUFA, ALA, ARA and DHA; and down regulated by LNA and EPA. These results suggest that there are individual and specific FA induced modifications of leptin, PPARα and CPT-1 gene expression in rainbow trout, and it is envisaged that such results may provide highly valuable information for future practical applications in fish nutrition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The Yale-Brown Obsessive Compulsive Scale (Y-BOCS) is the most widely accepted measure of obsessive-compulsive disorder (OCD) symptom severity. Recently, the scale has been revised into a second edition (Y-BOCS-II) in order to improve its measurement properties. The present study aimed to evaluate the psychometric properties of the Italian version of the Y-BOCS-II Severity Scale (SS) in a large clinical sample. METHOD: The original version of the Y-BOCS-II was translated into Italian, which involved forward and back-translation procedures. The Italian Y-BOCS-II-SS was administered to one hundred twenty-five treatment-seeking adults with OCD, together with the original Y-BOCS-SS and a battery of self-report measures assessing OCD symptom severity and depressive and anxious symptomology. The factor structure, internal consistency, temporal stability, and construct validity were investigated on the whole sample, while inter-rater and test-retest reliability were assessed on a subsample of participants. RESULTS: Factor analyses revealed a two-factor structure different from those of the original scale, comprising (1) symptom severity; and (2) interference from symptoms. Internal consistency, test-retest reliability over a 2-week period and inter-rater reliability were satisfactory. The Y-BOCS-II-SS also showed excellent construct validity (and better than the Y-BOCS-SS), with good convergent and discriminant validity when assessed against other OCD symptom measures and measures of depression, anxiety and worry. CONCLUSIONS: These findings suggest that the Italian version of the Y-BOCS-II-SS retains the adequate psychometric properties of the original and that it can be confidently used as an assessment tool of OCD symptoms in both clinical and research settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we report the distribution of orexin A (OXA), orexin B (OXB), and orexin receptor (OX2R) immunoreactive (ir) cells in the hypothalamus and gastrointestinal tract of Oncorhynchus mykiss fed diets with different dietary fatty acid compositions. Trout were fed five iso-energetic experimental diets containing fish oil, or one of four different vegetable oils (olive, sunflower, linseed, and palm oils) as the added dietary lipid source for 12 weeks. OXA, OXB, and OX2R immunoreactive neurons and nervous fibers were identified in the lateral and ventro-medial hypothalamus. OXA, OXB, and OX2R ir cells were found in the mucosa and glands of the stomach and in the mucosa of both the pyloric cecae and intestine. OX2R ir cells were localized in the mucosa layer of both the pyloric cecae and intestine. These immunohistochemical (IHC) results were confirmed via Western blotting. Antibodies against preproorexin (PPO) crossreacted with a band of ∼16 kDa in the hypothalamus, stomach, pyloric cecae, and intestine. Antibodies against OX2R crossreacted with a band of ∼38 kDa in the hypothalamus, pyloric cecae, and intestine. The presence and distribution of OXA, OXB, and OX2R ir cells in the hypothalamus and gastrointestinal tract did not appear to be affected by dietary oils. The presence of orexin system immunoreactive cells in the stomach, pyloric cecae, and intestine of rainbow trout, but not in the enteric nervous system, could suggest a possible role of these peptides as signaling of gastric emptying or endocrine modulation, implying a main local action played by orexins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: In small mammals brown adipose tissue (BAT) plays a predominant role in regulating energy expenditure (EE) via adaptive thermogenesis. New-born babies require BAT to control their body temperature, however its relevance in adults has been questioned. Active BAT has recently been observed in adult humans, albeit in much lower relative quantities than small mammals. Comparing and contrasting the molecular mechanisms controlling BAT growth and development in mice and humans will increase our understanding or how human BAT is developed and may identify potential therapeutic targets to increase EE. MicroRNAs are molecular mechanisms involved in mouse BAT development however, little is known about the miRNA profile in human BAT. The aims of this study were to establish a mouse BAT-enriched miRNA profile and compare this with miRNAs measured in human BAT. To achieve this we firstly established a mouse BAT enriched-miRNA profile by comparing miRNAs expressed in mouse BAT, white adipose tissue and skeletal muscle. Following this the BAT-enriched miRNAs predicted to target genes potentially involved in growth and development were identified.

METHODS: MiRNA levels were measured using PCR-based miRNA arrays. Results were analysed using ExpressionSuite software with the global mean expression value of all expressed miRNAs in a givensample used as the normalisation factor. Bio-informatic analyses was used to predict gene targets followed by Ingenuity Pathway Analysis.

RESULTS: We identified 35 mouse BAT-enriched miRNAs that were predicted to target genes potentially involved in growth and development. We also identified 145 miRNAs expressed in both mouse and human BAT, of which 25 were enriched in mouse BAT. Of these 25 miRNAs, miR-20a was predicted to target MYF5 and PPARγ, two important genes involved in brown adipogenesis, as well as BMP2 and BMPR2, genes involved in white adipogenesis. For the first time, 69 miRNAs were identified in human BAT but absent in mouse BAT, and 181 miRNAs were expressed in mouse but not in human BAT.

CONCLUSION: The present study has identified a small sub-set of miRNAs common to both mouse and human BAT. From this sub-set bioinformatics analysis suggested a potential role of miR-20a in the control of cell fate and this warrants further investigation. The large number of miRNAs found only in mouse BAT or only in human BAT highlights the differing molecular profile between species that is likely to influence the functional role of BAT across species. Nevertheless the BAT-enriched miRNA profiles established in the present study suggest targets to investigate in the control BAT development and EE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rainbow trout, Oncorhynchus mykiss, are intensively cultured globally. Understanding their requirement for long-chain polyunsaturated fatty acids (LC-PUFA) and the biochemistry of the enzymes and biosynthetic pathways required for fatty acid synthesis is important and highly relevant in current aquaculture. Most gnathostome vertebrates have two fatty acid desaturase (fads) genes with known functions in LC-PUFA biosynthesis and termed fads1 and fads2. However, teleost fish have exclusively fads2 genes. In rainbow trout, a fads2 cDNA had been previously cloned and found to encode an enzyme with Δ6 desaturase activity. In the present study, a second fads2 cDNA was cloned from the liver of rainbow trout and termed fads2b. The full-length mRNA contained 1578 nucleotides with an open reading frame of 1365 nucleotides that encoded a 454 amino acid protein with a predicted molecular weight of 52.48 kDa. The predicted Fads2b protein had the characteristic traits of the microsomal Fads family, including an N-terminal cytochrome b5 domain containing the heme-binding motif (HPPG), histidine boxes (HDXGH, HFQHH and QIEHH) and three transmembrane regions. The fads2b was expressed predominantly in the brain, liver, intestine and pyloric caeca. Expression of the fasd2b in yeast generated a protein that was found to specifically convert eicosatetraenoic acid (20:4n-3) to eicosapentaenoic acid (20:5n-3), and therefore functioned as a Δ5 desaturase. Therefore, rainbow trout have two fads2 genes that encode proteins with Δ5 and Δ6 desaturase activities, respectively, which enable this species to perform all the desaturation steps required for the biosynthesis of LC-PUFA from C18 precursors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most studies on dietary vegetable oil in rainbow trout (Oncorhynchus mykiss) have been conducted on a background of dietary EPA (20 : 5n-3) and DHA (22 : 6n-3) contained in the fishmeal used as a protein source in aquaculture feed. If dietary EPA and DHA repress their endogenous synthesis from α-linolenic acid (ALA, 18 : 3n-3), then the potential of ALA-containing vegetable oils to maintain tissue EPA and DHA has been underestimated. We examined the effect of individual dietary n-3 PUFA on the expression of the biosynthetic genes required for metabolism of ALA to DHA in rainbow trout. A total of 720 juvenile rainbow trout were allocated to twenty-four experimental tanks and assigned one of eight diets. The effect of dietary ALA, EPA or DHA, in isolation or in combination, on hepatic expression of fatty acyl desaturase (FADS)2a(Δ6), FADS2b(Δ5), elongation of very long-chain fatty acid (ELOVL)5 and ELOVL2 was examined after 3 weeks of dietary intervention. The effect of these diets on liver and muscle phospholipid PUFA composition was also examined. The expression levels of FADS2a(Δ6), ELOVL5 and ELOVL2 were highest when diets were high in ALA, with no added EPA or DHA. Under these conditions ALA was readily converted to tissue DHA. Dietary DHA had the largest and most consistent effect in down-regulating the gene expression of all four genes. The ELOVL5 expression was the least responsive of the four genes to dietary n-3 PUFA changes. These findings should be considered when optimising aquaculture feeds containing vegetable oils and/or fish oil or fishmeal to achieve maximum DHA synthesis.