47 resultados para photocatalytic hydrogen, solar irradiation, solar hydrogen, photocatalytic water splitting, semiconductoring materials, nanostructured hematite


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Sewer odour and corrosion is caused by the reduction of sulphide ions and the release of hydrogen sulphide gas (H2S) into the sewer atmosphere. The reduction of sulphide is determined by its dissipation rate which depends on many processes such as emission, oxidation and precipitation that prevail in wastewater environments. Two factors that mainly affect the dissipation of sulphide are sewer hydraulics and wastewater characteristics; modification to the latter by dosing certain chemicals is known as one of the mitigation strategies to control the dissipation of sulphide. This study investigates the dissipation of sulphide in the presence of NaOH, Mg(OH)2, Ca(NO3)2 and FeCl3 and the dissipation rate is developed as a function of hydraulic parameters such as the slope of the sewer and the velocity gradient. Experiments were conducted in a 18m experimental sewer pipe with adjustable slope to which, firstly no chemical was added and secondly each of the above mentioned chemicals was supplemented in turn. A dissipation rate constant of 2×10-6 for sulphide was obtained from experiments with no chemical addition. This value was then used to predict the sulphide concentration that was responsible for the emission of H2S gas in the presence of one of the above mentioned four chemicals. It was found that the performance of alkali substances (NaOH and Mg(OH)2) in suppressing the H2S gas emission was excellent while ferric chloride showed a moderate mitigating effect due to its slow reaction kinetics. Calcium nitrate was of little value since the wastewater used in this study experienced almost no biological growth. Thus the effectiveness of selected chemicals in suppressing H2S gas emission had the following order: NaOH ≥ Mg(OH)2 ≥ FeCl3 ≥ Ca(NO3)2.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Flexible dye-sensitized solar cells (DSSCs) built on plastic substrates have attracted great interest as they are lightweight and can be roll-to-roll printed to accelerate production and reduce cost. However, plastic substrates such as PEN and PET are permeable to water, oxygen and volatile electrolyte solvents, which is detrimental to the cell stability. Therefore, to address this problem, in this work, an ionic liquid (IL) electrolyte is used to replace the volatile solvent electrolyte. The initial IL-based devices only achieved around 50% of the photovoltaic conversion efficiency of the cells using the solvent electrolyte. Current-voltage and electrochemical impedance spectroscopy (EIS) analysis of the cells in the dark indicated that this lower efficiency mainly originated from (i) a lack of blocking layer to reduce recombination, and (ii) a lower charge collection efficiency. To combat these problems, cells were developed using a 12 nm thick blocking layer, produced by atomic layer deposition, and 1 μm thick P25 TiO2 film sensitized with the hydrophobic MK-2 dye. These flexible DSSCs utilizing an IL electrolyte exhibit significantly improved efficiencies and a <10% drop in performance after 1000 h aging at 60°C under continuous light illumination.