61 resultados para genetic diversity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Eleven novel polymorphic microsatellite loci developed from a microsatellite enriched genomic library, are presented for the Australian tree frog <i>Litoria peroniii>. We screened 29 individuals from a single population and detected high levels of polymorphism for all 11 loci with the number of alleles/locus ranging from 9 to 24. Values of expected and observed heterozygosities ranged from 0.789–0.955 and 0.207–1.00, respectively. These microsatellite markers should prove useful in determining levels of genetic diversity, measuring gene flow and migration, assigning individuals to their most likely population of origin, and in the assignment of paternity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An investigation of the genetic diversity of New Holland mouse populations using DNA. Ten distinct restriction enzyme fragment patterns or haplotypes were detected. From the fragment patterns, estimates of genetic divergence between the haplotypes revealed a degree of genetic structuring within New Holland mouse with four population assemblages apparent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Habitat destruction and fragmentation, interactions with introduced species or the relocation of animals to form new populations for conservation purposes may result in a multiplication of population bottlenecks. Examples are the translocations of koalas to French Island and its derivative Kangaroo Island population, with both populations established as insurance policies against koala extinction. In terms of population size, these conservation programs were success stories. However, the genetic story could be different. We conducted a genetic investigation of French and Kangaroo Island koalas by using 15 microsatellite markers, 11 of which are described here for the first time. The results confirm very low genetic diversity. French Island koalas have 3.8 alleles per locus and Kangaroo Island koalas 2.4. The present study found a 19% incidence of testicular abnormality in kangaroo Island animals. Internal relatedness, an individual inbreeding coefficient, was not significantly different in koalas with testicular abnormalities from that in other males, suggesting the condition is not related to recent inbreeding. It could instead result from an unfortunate selection of founder individuals carrying alleles for testicular abnormalities, followed by a subsequent increase in these alleles’ frequencies through genetic drift and small population-related inefficiency of selection. Given the low diversity and possible high prevalence of deleterious alleles, the genetic viability of the population remains uncertain, despite its exponential growth so far. This stands as a warning to other introductions for conservation reasons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent phylogenetic analyses of Albugo candida using the mitochondrial cytochrome c oxidase subunit II (cox2) gene, the nuclear ribosomal RNA large subunit (LSU) gene and the nuclear ribosomal RNA internal transcribed spacer (ITS) gene region have revealed significant genetic variation and led to the description of new species in the A. candida complex. This study examined the genetic diversity within Australian collections of A. candida from various Brassicaceae species in a range of geographic locations. Phylogenetic analysis of 31 Australian A. candida collections from 11 hosts using the rDNA ITS region, rDNA LSU region and cox2 mtDNA showed that the majority of Australian A. candida collections were the common form of A. candida. One collection from a common weed host, hairy bitter cress (Cardamine hirsuta), was found to belong to a previously reported but undescribed species, while three collections, also from C. hirsuta, were found to belong to a new undescribed species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A population genetics approach was used to investigate the genetic diversity of the spotted seahorse (Hippocampus kuda) in Thai waters; specifically, the degree of genetic differentiation and species evolution was inferred from sequence analysis of 353 bp of the mitochondrial (mt)DNA control region. The data were then used to identify discrete populations in Thai waters for effective conservation and management. Spotted seahorses were collected from 4 regions on the east and west coasts of the Gulf of Thailand and a geographically separated region in the Andaman Sea. Of the 101 mtDNA sequences analyzed, 7 haplotypes were identified, 5 of which were shared among individuals from the east and west coasts of the Gulf of Thailand. The remaining haplotypes were restricted to individuals from the Andaman Sea. Nucleotide and haplotype diversities were similar within the Gulf of Thailand samples, whereas diversity was lower in the Andaman Sea sample. Genetic differentiation appeared between pairs of samples from the Gulf of Thailand and Andaman Sea (FST, p < 0.0001). A large genetic variance appeared among the 2 population groups (94.46%, ΦCT = 0.94464, p < 0.01). A Neighbor-joining tree indicated that individuals from the Gulf of Thailand and Andaman Sea formed 2 phylogenetically distinct groups, which were segregated into different population-based clades. While results reported here indicate that populations from the Gulf of Thailand and Andaman Sea should be treated as separate conservation units, a larger sample size from the Andaman Sea is required to confirm this genetic partitioning and low level of diversity observed in the present study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This multi-disciplinary investigation found that: i) in Triodia-mallee the Mallee Emu-wren requires vegetation greater than 16-18 years since last burned, with high coverage of mature growth-phase Triodia scariosa (spinifex) and, ii) the species is panmictic with relatively low genetic diversity and evidence of genetic drift and bottlenecks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Habitat loss and associated fragmentation effects are well-recognised threats to biodiversity. Loss of functional connectivity (mobility, gene flow and demographic continuity) could result in population decline in altered habitat, because smaller, isolated populations are more vulnerable to extinction. We tested whether substantial habitat reduction plus fragmentation is associated with reduced gene flow in three 'decliner' woodland-dependent bird species (eastern yellow robin, weebill and spotted pardalote) identified in earlier work to have declined disproportionately in heavily fragmented landscapes in the Box-Ironbark forest region in north-central Victoria, Australia. For these three decliners, and one 'tolerant' species (striated pardalote), we compared patterns of genetic diversity, relatedness, effective population size, sex-ratios and genic (allele frequency) differentiation among landscapes of different total tree cover, identified population subdivision at the regional scale, and explored fine-scale genotypic (individual-based genetic signature) structure. Unexpectedly high genetic connectivity across the study region was detected for 'decliner' and 'tolerant' species. Power analysis simulations suggest that moderate reductions in gene flow should have been detectable. However, there was evidence of local negative effects of reduced habitat extent and structural connectivity: slightly lower effective population sizes, lower genetic diversity, higher within-site relatedness and altered sex-ratios (for weebill and eastern yellow robin) in 10 x 10 km 'landscapes' with low vegetation cover. We conclude that reduced structural connectivity in the Box-Ironbark ecosystem may still allow sufficient gene flow to avoid the harmful effects of inbreeding in our study species. Although there may still be negative consequences of fragmentation for demographic connectivity, the high genetic connectivity of mobile bird species in this system suggests that reconnecting isolated habitat patches may be less important than increasing habitat extent and/or quality if these need to be traded off.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background
Helicoverpa armigera and H. zea are amongst the most significant polyphagous pest lepidopteran species in the Old and New Worlds respectively. Separation of H. armigera and H. zea is difficult and is usually only achieved through morphological differences in the genitalia. They are capable of interbreeding to produce fertile offspring. The single species status of H. armigera has been doubted, due to its wide distribution and plant host range across the Old World. This study explores the global genetic diversity of H. armigera and its evolutionary relationship to H zea.

Results
We obtained partial (511 bp) mitochondrial DNA (mtDNA) Cytochrome Oxidase-I (COI) sequences for 249 individuals of H. armigera sampled from Australia, Burkina Faso, Uganda, China, India and Pakistan which were associated with various host plants. Single nucleotide polymorphisms (SNPs) within the partial COI gene differentiated H. armigera populations into 33 mtDNA haplotypes. Shared haplotypes between continents, low F-statistic values and low nucleotide diversity between countries (0.0017 – 0.0038) suggests high mobility in this pest. Phylogenetic analysis of four major Helicoverpa pest species indicates that H. punctigera is basal to H. assulta, which is in turn basal to H. armigera and H. zea. Samples from North and South America suggest that H. zea is also a single species across its distribution. Our data reveal short genetic distances between H. armigera and H. zea which seem to have been established via a founder event from H. armigera stock at around 1.5 million years ago.

Conclusion
Our mitochondrial DNA sequence data supports the single species status of H. armigera across Africa, Asia and Australia. The evidence for inter-continental gene flow observed in this study is consistent with published evidence of the capacity of this species to migrate over long distances. The finding of high genetic similarity between Old World H. armigera and New World H. zea emphasises the need to consider work on both pests when building pest management strategies for either.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The crayfish Geocharax gracilis is an important inhabitant of natural and agricultural drainage systems in south-eastern Australia. To investigate population structure, genetic diversity and patterns of connectivity in natural and human-altered ecosystems, we isolated and characterised 24 microsatellite loci using next generation sequencing. Loci were initially tested for levels of variation based on 12 individuals from across the species’ geographical range. A further 33 individuals from a single population were used to test for departures from Hardy–Weinberg equilibrium and linkage disequilibrium. We detected high to moderate levels of genetic variation across most loci with a mean allelic richness of 8.42 and observed heterozygosity of 0.629 (all samples combined). We found no evidence for linkage disequilibrium between any loci and only three loci (Geo01, Geo24 and Geo47) showed significant deviations from Hardy–Weinberg expectations. These same three loci, plus two additional loci (Geo06 and Geo28), also showed the presence of null alleles. These 24 variable markers will provide an important tool for future population genetic assessments in natural and human altered environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seagrasses are one of the most productive and economically important habitats in the coastal zone, but they are disappearing at an alarming rate, with more than half the world’s seagrass area lost since the 1990s. They now face serious threat from climate change, and there is much current speculation over whether they will survive the coming decades. The future of seagrasses depends on their ability to recover and adapt to environmental change—i.e. their ‘resilience’. Key to this, is understanding the role that genetic diversity plays in the resilience of this highly clonal group of species. To investigate population structure, genetic diversity, mating system (sexual versus asexual reproduction) and patterns of connectivity, we isolated and characterised 23 microsatellite loci using next generation sequencing for the Australian seagrass species, Zostera muelleri (syn. Z. capricorni), which is regarded as a globally significant congeneric species. Loci were tested for levels of variation based on eight individuals sampled from Lake Macquarie, New South Wales, Australia. We detected high to moderate levels of genetic variation across most loci with a mean allelic richness of 3.64 and unbiased expected hetrozygosity of 0.562. We found no evidence for linkage disequilibrium between any loci and only three loci (ZosNSW25, ZosNSW2, and ZosNSW47) showed significant deviations from Hardy–Weinberg expectations. All individuals displayed a unique multi-locus genotype and the combined probability of identity across all loci was low (P ID = 1.87 × 10−12) indicating a high level of power in detecting unique genotypes. These 23 markers will provide an important tool for future population genetic assessments in this important keystone species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mitochondrial DNA (mtDNA) can be a powerful genetic marker for tracing origins and history of invasive populations. Here, we use mtDNA to address questions relevant to the understanding of invasion pathways of common starlings (Sturnus vulgaris) into Western Australia (WA) and discuss the utility of this marker to provide information useful to invasive species management. Mitochondrial sequence data indicate two geographically restricted genetic groups within Australia. Evidence of dispersal from genetically distinct sources outside the sampled range of starlings in Australia suggests increased vigilance by management agencies may be required to prevent further incursions from widely separated localities. Overall, genetic diversity in Australia was lower than in samples from the native range. Within Australia, genetic diversity was lowest in the most recently colonized area in the west, indicating that demographic bottlenecks have occurred in this area. Evidence of restricted dispersal between localities on the edge of the range expansion (ERE) in WA and other Australian sampling localities suggests that localized control within the ERE may be effective in preventing further range expansion. Signatures of spatial and demographic expansion are present in mismatch analyses from sampling localities located at the ERE, but neutrality indices did not support this finding, suggesting that the former may be more sensitive to recent expansion. Additionally, mismatch analyses support the presence of admixture, which is likely to have occurred pre-introduction. We compare our findings with those from a microsatellite study of the same samples and discuss how the mtDNA analyses used here offer valuable and unique insights into the invasion history of introduced species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are many large, easy-to-observe anseriform birds (ducks, geese, and swans) in northern Australia and New Guinea and they often gather in large numbers. Yet, the structure of their populations and their regional movements are poorly understood. Lack of understanding of population structure limits our capacity to understand source-sink dynamics relevant to their conservation or assess risks associated with avian-borne pathogens, in particular, avian influenza for which waterfowl are the main reservoir species. We set out to assess present-day genetic connectivity between populations of two widely distributed waterfowl in the Australo-Papuan tropics, magpie goose Anseranas semipalmata (Latham, 1798) and wandering whistling-duck Dendrocygna arcuata (Horsfield, 1824). Microsatellite data were obtained from 237 magpie geese and 64 wandering whistling-duck. Samples were collected across northern Australia, and at one site each in New Guinea and Timor Leste. In the wandering whistling-duck, genetic diversity was significantly apportioned by region and sampling location. For this species, the best model of population structure was New Guinea as the source population for all other populations. One remarkable result for this species was genetic separation of two flocks sampled contemporaneously on Cape York Peninsula only a few kilometers apart. In contrast, evidence for population structure was much weaker in the magpie goose, and Cape York as the source population provided the best fit to the observed structure. The fine scale genetic structure observed in wandering whistling-duck and magpie goose is consistent with earlier suggestions that the west-coast of Cape York Peninsula is a flyway for Australo-Papuan anseriforms between Australia and New Guinea across Torres Strait.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1.Habitat loss and associated fragmentation are major drivers of biodiversity decline, and understanding how they affect population processes (e.g. dispersal) is an important conservation goal. In a large-scale test employing 10 × 10 km units of replication, three species of Australian birds, the fuscous honeyeater, yellow-tufted honeyeater and white-plumed honeyeater, responded differently to fragmentation. The fuscous and yellow-tufted honeyeaters are ‘decliners’ that disappeared from suitable habitat in landscapes where levels of tree-cover fell below critical thresholds of 17 and 8%, respectively. The white-plumed honeyeater is a ‘tolerant’ species whose likelihood of occurrence in suitable habitat was independent of landscape-level tree-cover. 2.To determine whether the absence of the two decliner species in low tree-cover landscapes can be explained by reduced genetic connectivity, we looked for signatures of reduced mobility and gene flow in response to fragmentation across agricultural landscapes in the Box-Ironbark region of north-central Victoria, Australia. 3.We compared patterns of genetic diversity and population structure at the regional scale and across twelve 100 km2 landscapes with different tree-cover extents. We used genetic data to test landscape models predicting reduced dispersal through the agricultural matrix. We tested for evidence of sex-biased dispersal and sex-specific responses to fragmentation. 4.Reduced connectivity may have contributed to the disappearance of the yellow-tufted honey-eater from low tree-cover landscapes, as evidenced by male bias and increased relatedness among males in low tree-cover landscapes and signals of reduced gene flow and mobility through the agricultural matrix. We found no evidence for negative effects of fragmentation on gene flow in the other decliner, the fuscous honeyeater, suggesting that undetected pressures act on this species. As expected, there was no evidence for decreased movement through fragmented landscapes for the tolerant white-plumed honeyeater. 5.We demonstrated effects of habitat loss and fragmentation (stronger patterns of genetic differentiation, increased relatedness among males) on the yellow-tufted honeyeater above the threshold at which probability of occurrence dropped. Increasing extent and structural connectivity of habitat should be an appropriate management action for this species and other relatively sedentary woodland specialist species for which it can be taken as representative.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human impacts through habitat destruction, introduction of invasive species and climate change are increasing the number of species threatened with extinction. Decreases in population size simultaneously lead to reductions in genetic diversity, ultimately reducing the ability of populations to adapt to a changing environment. In this way, loss of genetic polymorphism is linked with extinction risk. Recent advances in sequencing technologies mean that obtaining measures of genetic diversity at functionally important genes is within reach for conservation programs. A key region of the genome that should be targeted for population genetic studies is the Major Histocompatibility Complex (MHC). MHC genes, found in all jawed vertebrates, are the most polymorphic genes in vertebrate genomes. They play key roles in immune function via immune-recognition and -surveillance and host-parasite interaction. Therefore, measuring levels of polymorphism at these genes can provide indirect measures of the immunological fitness of populations. The MHC has also been linked with mate-choice and pregnancy outcomes and has application for improving mating success in captive breeding programs. The recent discovery that genetic diversity at MHC genes may protect against the spread of contagious cancers provides an added impetus for managing and protecting MHC diversity in wild populations. Here we review the field and focus on the successful applications of MHC-typing for conservation management. We emphasize the importance of using MHC markers when planning and executing wildlife rescue and conservation programs but stress that this should not be done to the detriment of genome-wide diversity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exotic animal and plant species introduced into the Australian continent often imparted catastrophic effects on the indigenous fauna and flora. Proponents of biological control introduced the South American Cane Toad (Bufo marinus) into the sugar cane fields of Queensland in 1935. The Cane Toad is one of the most toxic bufonids and when seized by naive Australian predators, the toxin usually kills the attacker. One group of Australian squamate reptiles that are very susceptible to Cane Toad toxins is varanid lizards. Prior to Cane Toad invasion of our study area, the Adelaide River floodplain of the Northern Territory of Australia, annual mortality of adult male radio-tagged yellow-spotted Goannas (Varanus panoptes) was very low. After the arrival of toads in October 2005, all radio-tracked goannas were found dead in August 2006, most likely attempting to feed on the toads. Our results suggest that invasive Cane Toads place naive adult male Yellow-spotted Goannas at risk of possibly >90% mortality. This increase in mortality could reduce the genetic diversity and hamper long-term survival of these large carnivorous lizards.