61 resultados para Machining


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium alloy (Ti-6Al-4V) has a wide range of application in various fields of engineering. Titanium is mainly used to manufacture aerospace components like landing gear, fuselage, wings, engines etc. and biomedical components like hip joint, knee joint, dental implants etc. Titanium has outstanding material properties such as corrosion resistance, fatigue strength, tensile strength and a very good biocompatibility which makes this material very alluring for biomedical applications. Contrary, the machinability of the material is problematic because of the phase transformations and thus, titanium alloy is a challenge for machining operation. This research is a comparative analysis between the implants manufactured by traditional method of casting and machining. The femoral stem of the hip joint replacement is designed and the component is machined using a five-axis CNC machine.The machined component was subjected to surface roughness testing, tensile testing and bulk hardness testing. The values were compared with the values of titanium implants manufactured by casting. © (2014) Trans Tech Publications, Switzerland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis focuses on studying aluminum micro-truss sandwich structures. These structures have useful properties for a wide range of applications, such as aircraft manufacturing. This thesis suggests the application of a new approach that is using elevated temperature to reduce the undesirable defections in these truss structures during forming.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Truss core laminates display stiffness and strength/density ratios superior to those seen in foam cored laminates. However, this superiority is held only for ideal shaped struts. If the truss core is damaged, its performance rapidly decreases towards that of a foam. The present study investigates the stiffness and strength degradation with imposed core deformation/damage. This is done for a pyramidal core structure made by electro-discharge machining from AA5083 alloy. The experiments are compared with finite element predictions. The effect of the strain rate sensitivity is studied by performing the tests at different temperatures and by FE simulations with different material data sets. The results show reasonable agreement between experiments and modeling. The stiffness of a damaged truss core rapidly degrades and reaches the performance levels seen in foams after ≈8% of deformation. The results show that a high strain rate sensitivity significantly influences post-buckling core behavior and is able to decrease the stiffness and strength degradation rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates the chip formation mechanism and machinability of two-phase materials, such as, wrought duplex stainless steel alloys SAF 2205 and SAF 2507. SEM and optical microscopic details of the frozen cutting zone and chips revealed that the harder austenite phase dissipates in the advancement of the cutting tool, being effectively squeezed out of the softer ferrite phase. Microhardness profiles reveal correlation in hardness from the workpiece material transitioning to the chip. The tool wear (TiAIN + TiN coated solid carbide twist drill) and machining forces were investigated. Tool wear, was dominantly due to the adhesion process which developed from built-up edge formation, is highly detrimental to the flank face. Flute damage was also observed as a major issue in the drilling of duplex alloys leading to premature tool failure. Duplex 2507 shows higher sensitivity to cutting speed during machining and strain hardening at higher velocity and less machinability due to presence of higher percentage of Ni, Mo and Cr.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynamic surface roughness prediction during metal cutting operations plays an important role to enhance the productivity in manufacturing industries. Various machining parameters such as unwanted noises affect the surface roughness, whatever their effects have not been adequately quantified. In this study, a general dynamic surface roughness monitoring system in milling operations was developed. Based on the experimentally acquired data, the milling process of Al 7075 and St 52 parts was simulated. Cutting parameters (i.e., cutting speed, feed rate, and depth of cut), material type, coolant fluid, X and Z components of milling machine vibrations, and white noise were used as inputs. The original objective in the development of a dynamic monitoring system is to simulate wide ranges of machining conditions such as rough and finishing of several materials with and without cutting fluid. To achieve high accuracy of the resultant data, the full factorial design of experiment was used. To verify the accuracy of the proposed model, testing and recall/verification procedures have been carried out and results showed that the accuracy of 99.8 and 99.7 % were obtained for testing and recall processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ti and Ti-based alloys have unique properties such as high strength, low density and excellent corrosion resistance. These properties are essential for the manufacture of lightweight and high strength components for biomedical applications. In this paper, Ti properties such as metallurgy, mechanical properties, surface modification, corrosion resistance, biocompatibility and osseointegration in biomedical applications have been discussed. This paper also analyses the advantages and disadvantages of various Ti manufacturing processes for biomedical applications such as casting, powder metallurgy, cold and hot working, machining, laser engineering net shaping (LEN), superplastic forming, forging and ring rolling. The contributions of this research are twofold, firstly scrutinizing the behaviour of Ti and Ti-based alloys in-vivo and in-vitro experiments in biomedical applications to determine the factors leading to failure, and secondly strategies to achieve desired properties essential to improving the quality of patient outcomes after receiving surgical implants. Future research will be directed toward manufacturing of Ti for medical applications by improving the production process, for example using optimal design approaches in additive manufacturing and investigating alloys containing other materials in order to obtain better medical and mechanical characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stainless steel is the most widely used alloys of steel. The reputed variety of stainless steel having customised material properties as per the design requirements is Duplex Stainless Steel and Austenitic Stainless Steel. The Austenite Stainless Steel alloy has been developed further to be Super Austenitic Stainless Steel (SASS) by increasing the percentage of the alloying elements to form the half or more than the half of the material composition. SASS (Grade-AL-6XN) is an alloy steel containing high percentages of nickel (24%), molybdenum (6%) and chromium (21%). The chemical elements offer high degrees of corrosion resistance, toughness and stability in a large range of hostile environments like petroleum, marine and food processing industries. SASS is often used as a commercially viable substitute to high cost non-ferrous or non-metallic metals. The ability to machine steel effectively and efficiently is of utmost importance in the current competitive market. This paper is an attempt to evaluate the machinability of SASS which has been a classified material so far with very limited research conducted on it. Understanding the machinability of this alloy would assist in the effective forming of this material by metal cutting. The novelty of research associated with this is paper is reasonable taking into consideration the unknowns involved in machining SASS. The experimental design consists of conducting eight milling trials at combination of two different feed rates, 0.1 and 0.15 mm/tooth; cutting speeds, 100 and 150 m/min; Depth of Cut (DoC), 2 and 3 mm and coolant on for all the trials. The cutting tool has two inserts and therefore has two cutting edges. The trial sample is mounted on a dynamometer (type 9257B) to measure the cutting forces during the trials. The cutting force data obtained is later analyzed using DynaWare supplied by Kistler. The machined sample is subjected to surface roughness (Ra) measurement using a 3D optical surface profilometer (Alicona Infinite Focus). A comprehensive metallography process consisting of mounting, polishing and etching was conducted on a before and after machined sample in order to make a comparative analysis of the microstructural changes due to machining. The microstructural images were capture using a digital microscope. The microhardness test were conducted on a Vickers scale (Hv) using a Vickers microhardness tester. Initial bulk hardness testing conducted on the material show that the alloy is having a hardness of 83.4 HRb. This study expects an increase in hardness mostly due to work hardening may be due to phase transformation. The results obtained from the cutting trials are analyzed in order to judge the machinability of the material. Some of the criteria used for machinability evaluation are cutting force analysis, surface texture analysis, metallographic analysis and microhardness analysis. The methodology followed in each aspect of the investigation is similar to and inspired by similar research conducted on other materials. However, the novelty of this research is the investigation of various aspects of machinability and drawing comparisons between each other while attempting to justify each result obtained to the microstructural changes observed which influence the behaviour of the alloy. Due to the limited scope of the paper, machinability criteria such as chip morphology, Metal Removal Rate (MRR) and tool wear are not included in this paper. All aspects are then compared and the optimum machining parameters are justified with a scope for future investigations

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laser micro-machining offers a versatile tool for the rapid manufacturing of polymeric microfluidics systems, with a typical turn-around-time in the order of minutes. However, the chaotic nature of the thermal evaporative ablation process can yield a significant number of defects in the surface of the manufactured microchannels, in the form of residual condensed material. In this work we have investigated the use of solvent evaporation by which to not only laminate bond the laser machined structures but to remove a significant number of the defect formed by the condensation of residual polymer. Results are presented of the surface profiling of the bonded channel structures and demonstrations of the bonding of the microchips to produce autonomous capillary microchannels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This chapter investigates two important processing methods, such as welding and machine of duplex stainless steel. The welding process welding generally degrades the properties of these materials by redistributing the phases during melting and solidification. On the other hand, the redistribution during machining mainly take place combined effect of stress, strain rate and temperature. Mechanism of machining process and several welding methods has been analysed in details. It was found that outcomes of welding processes depend on the welding methods. Most of the cases an appropriate annealing process can be used to restore the expected properties of the weld joints though the parameters of annealing process are different in different welding methods. Nonmetallic inclusions and the low carbon content of duplex stainless steel reduce the machinability of duplex stainless steel. SEM and optical microscopic details of the frozen cutting zone and chips revealed that the harder austenite phase dissipates in the advancement of the cutting tool, being effectively squeezed out of the softer ferrite phase. Abrasion and adhesion were the most common wear modes developed on the flank and rake faces. Adhesion wear being the most prevalent on the flank face, appeared to be initiated by built-up edge formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The manufacturing index of a country relies on the quality of manufacturing research outputs. Theemergence of new materials such as composites and multi component alloy has replaced traditionalmaterials in certain design application. Materials with properties like high strength to weight ratio,fatigue strength, wear resistance, thermal stability and damping capacity are a popular choice for adesign engineer. Contrary, the manufacturing engineer is novice to the science of machining thesematerials. This paper is an attempt to focus on the current trends in machinability research and anaddition to the existing information on machining. The paper consist of information on machiningAustempered Ductile Iron (ADI), Duplex Stainless Steel and Nano-Structured Bainitic Steel. Thevarious techniques used to judge the machinability of these materials is described in this paper.Studying the chip formation process in duplex steel using a quick stop device, metallographic analysisusing heat tinting of ADI and cutting force analysis of Nano-structured bainitic steel is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to high demand in engineering materials especially with high strength to weight ratio and advantageous material properties such as wear resistance and thermal stability or high entropy. This essential parametric enhancement has led to the development of Multi Component High Entropy Alloys (MCHEA). It has been proposed in this study to investigate the machinability characteristics of MCHEA. The MCHEA are usually amalgamation with multiple elements such as aluminium, cobalt, manganese, nickel, chromium and titanium with their individual concentrations ranging from 5-35% overall. The experimental design consists of basic characterization of the material and conducting machinability trails-milling. The basic material characterization consists of evaluating bulk hardness, microstructural image generation, microhardness and chemical composition using spectrometry. The milling trails are conducted using 2 flute, 30º helix ball nose solid carbide end-mill cutting tool with combination of cutting parameters such as constant cutting speed, 30 m/min; varied feed, 0.01 mm/tooth and 0.02mm/tooth; depth of cuts, 1.5 and 3 mm and coolant on. The outputs obtained from the machining trails are subjected to analysis such as cutting force. In addition, the surface roughness of the material is evaluated using 3D optical surface profilometer. Similarly, the solutions to alleviate the drawbacks are also exemplified during machining of MCHEA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quality of a machined finish plays a major role in the performance of milling operations, good surface quality can significantly improve fatigue strength, corrosion resistance, or creep behaviour as well as surface friction. In this study, the effect of cutting parameters and cutting fluid pressure on the quality measurement of the surface of the crest for threads milled during high speed milling operations has been scrutinised. Cutting fluid pressure, feed rate and spindle speed were the input parameters whilst minimising surface roughness on the crest of the thread was the target. The experimental study was designed using the Taguchi L32 array. Analysing and modelling the effective parameters were carried out using both a multi-layer perceptron (MLP) and radial basis function (RBF) artificial neural networks (ANNs). These were shown to be highly adept for such tasks. In this paper, the analysis of surface roughness at the crest of the thread in high speed thread milling using a high accuracy optical profile-meter is an original contribution to the literature. The experimental results demonstrated that the surface quality in the crest of the thread was improved by increasing cutting speed, feed rate ranging 0.41-0.45 m/min and cutting fluid pressure ranging 2-3.5 bars. These outcomes characterised the ANN as a promising application for surface profile modelling in precision machining.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the tool wear and surface integrity during machining of wrought and Selective LaserMelted (SLM) titanium alloy (after heat treatment) are studied. Face turning trails were carried out onboth the materials at different cutting speeds of 60,120 and 180 m/min. Cutting tools and machinedspecimens collected are characterized using scanning electron microscope, surface profiler and opticalmicroscope to study the tool wear, machined surface quality and machining induced microstructuralalterations. It was found that high cutting speeds lead to rapid tool wear during machining of SLMTi-6Al-4V materials. Rapid tool wear observed at high cutting speeds in machining SLM Ti-6Al-4Vresulted in damaging the surface integrity by 1) Deposition of chip/work material on the machinedsurface giving rise to higher surface roughness and 2) Increasing the depth of plastic deformationon the machined sub surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The size of reinforced particles notably affects the electro-discharge machining (EDM) of metal matrix composites (MMCs). This paper explores the mechanism of wire EDM of MMCs with different sizes of reinforced particles as well as the corresponding unreinforced matrix material. The mechanisms of material removal, surface generation, and taper kerf formation were investigated. This study shows that the particles’ ability to protect matrix materials from the intense heat of electric arc controls the material removal rate, surface generation, and taper of kerf. The low melting point matrix material is removed very easily, but the heat resistance reinforced particles delay the removal of material and facilitate the transfer of the workpiece material to wire electrode and vice versa. Thus, the material stays longer in touch with intense heat and affects the surface generation, wire electrode wear, and width of the kerf.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research work presents a machinability study between wrought grade titanium and selective laser melted (SLM) titanium Ti-6Al-4V in a face turning operation, machined at cutting speeds between 60 and 180 m/min. Machinability characteristics such as tool wear, cutting forces, and machined surface quality were investigated. Coating delamination, adhesion, abrasion, attrition, and chipping wear mechanisms were dominant during machining of SLM Ti-6Al-4V. Maximum flank wear was found higher in machining SLM Ti-6Al-4V compared to wrought Ti-6Al-4V at all speeds. It was also found that high machining speeds lead to catastrophic failure of the cutting tool during machining of SLM Ti-6Al-4V. Cutting force was higher in machining SLM Ti-6Al-4V as compared to wrought Ti-6Al-4V for all cutting speeds due to its higher strength and hardness. Surface finish improved with the cutting speed despite the high tool wear observed at high machining speeds. Overall, machinability of SLM Ti-6Al-4V was found poor as compared to the wrought alloy.