62 resultados para Cellular telephony


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal homoeostasis in cyanobacteria is based on uptake and export systems that are controlled by their own regulators. This study characterises the zinc uptake (Znu) system in Nostoc punctiforme. The system was found to comprise of three subunits in an ACB operon: a Zn2+-binding protein (ZnuA18), a transmembrane domain (ZnuB) and an ATPase (ZnuC). These proteins are encoded within the znu operon regulated by a zinc uptake transcription repressor (Zur). Interestingly, a second Zn2+-binding protein (ZnuA08) was also identified at a distal genomic location. Interactions between components of the ZnuACB system were investigated using knockouts of the individual genes. The znuA08-, znuA18-, znuB- and znuC- mutants displayed overall reduced znuACB transcript levels, suggesting that all system components are required for normal expression of znu genes. Zinc uptake assays in the Zn2+-binding protein mutant strains showed that the disruption of znuA18 had a greater negative effect on zinc uptake than disruption of znuA08. Complementation studies in Escherichia coli indicated that both znuA08 and znuA18 were able to restore zinc uptake in a znuA- mutant, with znuA18 permitting the highest zinc uptake rate. The N. punctiforme zur was also able to complement the E. coli zur- mutant.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mood disorder prodrome is conceptualized as a symptomatic, but not yet clinically diagnosable stage of an affective disorder. Although a growing area, more focused research is needed in the pediatric population to better characterize psychopathological symptoms and biological markers that can reliably identify this very early stage in the evolution of mood disorder pathology. Such information will facilitate early prevention and intervention, which has the potential to affect a person’s disease course.This review focuses on the prodromal characteristics, risk factors, and neurobiological mechanisms of mood disorders. In particular, we consider the influence of early-life stress, inflammation, and allostatic load in mediating neural mechanisms of neuroprogression. These inherently modifiable factors have known neuroadaptive and neurodegenerative implications, and consequently may provide useful biomarker targets. Identification of these factors early in the course of the disease will accordingly allow for the introduction of early interventions which augment an individual’s capacity for psychological resilience through maintenance of synaptic integrity and cellular resilience. A targeted and complementary approach to boosting both psychological and physiological resilience simultaneously during the prodromal stage of mood disorder pathology has the greatest promise for optimizing the neurodevelopmental potential of those individuals at risk of disabling mood disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Excessive axial elongation of the eye is the principal structural cause of myopia. The increase in eye size results from active remodelling of the sclera, producing a weakened scleral matrix. The present study will detail the biomechanics of the sclera and highlight the matrix and cellular factors important in the control of eye size. Scleral elasticity (load vs. tissue extension) and creep rate (tissue extension vs. time) have been measured postmortem in human eyes. Animal models of myopia have allowed the direct relevance of scleral biomechanics to be investigated during myopia development. Recently, data on tissue matrices incorporating scleral fibroblasts have highlighted the role of cellular contraction in scleral biomechanics. Scleral elasticity is increased in eyes developing myopia, with a reduction in the failure load of the tissue. Scleral creep rate is increased in the sclera from eyes developing myopia, and reduced in eyes recovering from myopia. These changes in biomechanical properties of the sclera occur early in the development of myopia (within 24 h). Alterations in scleral biomechanics during myopia development have been attributed to changes in matrix constituents, principally reduced collagen content. Although the biochemical structure of the sclera plays a critical role in defining the mechanical properties, recent studies investigating the cellular mechanics of the sclera, implicate myofibroblasts in scleral biomechanics. Scleral myofibroblasts have the capacity to contract the matrix and are regulated by tissue stress and growth factors such as transforming growth factor-ß. Changes in these regulatory factors have been observed during myopia development, implicating cellular factors in the resultant weakened sclera. Changes in the biomechanical properties of the sclera are important in facilitating the increase in axial length that results in myopia. Understanding the matrix and cellular factors contributing to the weakened sclera may aid in the development of a clinically appropriate treatment for myopia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project is a co-operative study between ACCAN and Deakin University. It focuses on Unit Pricing, the practice of displaying the price of goods or services based on a standard quantity, to allow a direct comparison between competitive offers. This study aimed at gauging whether the new unit pricing information for mobile phone contracts assists consumers in assessing and comparing the value provided across alternative contracts within and between suppliers. Some 24 in-depth interviews were conducted with consumers who had recently bought or renewed a mobile phone contract.
The research showed that most consumers could use unit pricing information and some found it useful. Where consumers’ plans had unlimited or infinite capacity, unit pricing information was not relevant. Many consumers preferred voice allowances to be expressed in minutes, rather than in dollar allowances. Data was the most problematic category, as consumers typically had only limited understanding of the amount of data that various applications used. Most did have a broad understanding of what total capacity in data they would need, typically expressed in gigabytes.
Consumers commonly sought simplicity in deciding on which plan they would purchase or renew. A key issue for consumers was not “going over”, that is not exceeding their call, text or data allowances. For that reason, they were prepared to choose a plan that commonly resulted in them not using their full allowances each month. Some consumers used Apps on their smartphones to monitor their usage. Not all consumers had experienced advisory messages about nearing the limits of their plan’s allowances.
The Report recommended that:

R1. Unit pricing should be maintained
R2. Where unit pricing is provided for call costs, these should be expressed in terms of a one-minute call.
R3 Unit pricing for data should be expressed in terms of gigabytes or part thereof.
R4 In advertising mobile phone plans and at point of sales, customers should be provided with three levels of information – 1) overall plan features, 2) unit pricing information and 3) a data calculator.
R5 Level 2 and 3 information should be provided in a standard format across the industry, enabling consumers to make ready comparisons between plans and between competitive offers from different providers.
R6. Continuing public education is needed.
R7. Warnings about going over should always include the date when the allowance period ends and tell consumers what the rate will be if they “go over” based on the Level 2 information.
R8. The Consumer Protection Code should be reviewed in the light of these findings and recommendations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monodispersed mesoporous silica nanoparticles (MSNs) of optimal size and configuration were synthesized for uptake by plant organs, tissues and cells. These monodispersed nanoparticles have a size of 20 nm with interconnected pores with an approximate diameter of 2.58 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercise at regular intervals is assumed to have a positive effect on immune functions. Conversely, after spaceflight and under simulated weightlessness (e.g., bed rest), immune functions can be suppressed. We aimed to assess the effects of simulated weightlessness (Second Berlin BedRest Study; BBR2-2) on immunological parameters and to investigate the effect of exercise (resistive exercise with and without vibration) on these changes. Twenty-four physically and mentally healthy male volunteers (20-45 years) performed resistive vibration exercise (n=7), resistance exercise without vibration (n=8) or no exercise (n=9) within 60 days of bed rest. Blood samples were taken 2 days before bed rest, on days 19 and 60 of bed rest. Composition of immune cells was analyzed by flow cytometry. Cytokines and neuroendocrine parameters were analyzed by Luminex technology and ELISA/RIA in plasma. General changes over time were identified by paired t-test, and exercise-dependent effects by pairwise repeated measurements (analysis of variance (ANOVA)). With all subjects pooled, the number of granulocytes, natural killer T cells, hematopoietic stem cells and CD45RA and CD25 co-expressing T cells increased and the number of monocytes decreased significantly during the study; the concentration of eotaxin decreased significantly. Different impacts of exercise were seen for lymphocytes, B cells, especially the IgD(+) subpopulation of B cells and the concentrations of IP-10, RANTES and DHEA-S. We conclude that prolonged bed rest significantly impacts immune cell populations and cytokine concentrations. Exercise was able to specifically influence different immunological parameters. In summary, our data fit the hypothesis of immunoprotection by exercise and may point toward even superior effects by resistive vibration exercise.Cellular & Molecular Immunology advance online publication, 10 November 2014; doi:10.1038/cmi.2014.106.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Building simulation is most useful and most difficult in early design stages. Most useful since the optimisation potential is large and most difficult because input data are often not available at the level of resolution required for simulation software. The aim of this paper is to addresses this difficulty, by analysing the predominantly qualitative information in early stages of an architectural design process in search for indicators towards quantitative simulation input. The discussion in this paper is focused on cellular offices. Parameters related to occupancy, the use of office equipment, night ventilation, the use of lights and blinds are reviewed based on simulation input requirements, architectural considerations in early design stages and occupant behaviour considerations in operational stages. A worst and ideal case scenario is suggested as a generic approach to model occupant behaviour in early design stages when more detailed information is not available. Without actually predicting specific occupant behaviour, this approach highlights the magnitude of impact that occupants can have on comfort and building energy performance and it matches the level of resolution of available architectural information in early design stages. This can be sufficient for building designers to compare the magnitude of impact of occupants with other parameters in order to inform design decisions. Potential indicators in early design stages towards the ideal or worst case scenario are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipolysis involves the sequential breakdown of fatty acids from triacylglycerol and is increased during energy stress such as exercise. Adipose triglyceride lipase (ATGL) is a key regulator of skeletal muscle lipolysis and perilipin (PLIN) 5 is postulated to be an important regulator of ATGL action of muscle lipolysis. Hence, we hypothesized that non-genomic regulation such as cellular localization and the interaction of these key proteins modulate muscle lipolysis during exercise. PLIN5, ATGL and CGI-58 were highly (>60%) colocated with Oil Red O (ORO) stained lipid droplets. PLIN5 was significantly colocated with ATGL, mitochondria and CGI-58, indicating a close association between the key lipolytic effectors in resting skeletal muscle. The colocation of the lipolytic proteins, their independent association with ORO and the PLIN5/ORO colocation were not altered after 60 min of moderate intensity exercise. Further experiments in cultured human myocytes showed that PLIN5 colocation with ORO or mitochondria is unaffected by pharmacological activation of lipolytic pathways. Together, these data suggest that the major lipolytic proteins are highly expressed at the lipid droplet and colocate in resting skeletal muscle, that their localization and interactions appear to remain unchanged during prolonged exercise, and, accordingly, that other post-translational mechanisms are likely regulators of skeletal muscle lipolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidative and nitrosative stress (O&NS) is causatively implicated in the pathogenesis of Alzheimer’s and Parkinson’s disease, multiple sclerosis, chronic fatigue syndrome, schizophrenia and depression. Many of the consequences stemming from O&NS, including damage to proteins, lipids and DNA, are well known, whereas the effects of O&NS on lipoprotein-based cellular signalling involving palmitoylation and plasma membrane lipid rafts are less well documented. The aim of this narrative review is to discuss the mechanisms involved in lipid-based signalling, including palmitoylation, membrane/lipid raft (MLR) and n-3 polyunsaturated fatty acid (PUFA) functions, the effects of O&NS processes on these processes and their role in the abovementioned diseases. S-palmitoylation is a post-translational modification, which regulates protein trafficking and association with the plasma membrane, protein subcellular location and functions. Palmitoylation and MRLs play a key role in neuronal functions, including glutamatergic neurotransmission, and immune-inflammatory responses. Palmitoylation, MLRs and n-3 PUFAs are vulnerable to the corruptive effects of O&NS. Chronic O&NS inhibits palmitoylation and causes profound changes in lipid membrane composition, e.g. n-3 PUFA depletion, increased membrane permeability and reduced fluidity, which together lead to disorders in intracellular signal transduction, receptor dysfunction and increased neurotoxicity. Disruption of lipid-based signalling is a source of the neuroimmune disorders involved in the pathophysiology of the abovementioned diseases. n-3 PUFA supplementation is a rational therapeutic approach targeting disruptions in lipid-based signalling.