42 resultados para Rapid virus DNA extraction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human immunodeficiency virus (HIV) particles produced in COS-7 cells transfected with HIV type 1 (HIV-1) proviral DNA contain 8 molecules of tRNA(3Lys) per 2 molecules of genomic RNA and 12 molecules of tRNA1,2Lys per 2 molecules of genomic RNA. When COS-7 cells are transfected with a plasmid containing both HIV-1 proviral DNA and a human tRNA3Lys gene, there is a large increase in the amount of cytoplasmic tRNA3Lys per microgram of total cellular RNA, and the tRNA3Lys content in the virus increases from 8 to 17 molecules per 2 molecules of genomic RNA. However, the total number of tRNALys molecules per 2 molecules of genomic RNA remains constant at 20; i.e., the viral tRNA1,2Lys content decreases from 12 to 3 molecules per 2 molecules of genomic RNA. All detectable tRNA3Lys is aminoacylated in the cytoplasm of infected cells and deacylated in the virus. When COS-7 cells are transfected with a plasmid containing both HIV-1 proviral DNA and a mutant amber suppressor tRNA3Lys gene (in which the anticodon is changed from TTT to CTA), there is also a large increase in the relative concentration of cytoplasmic tRNA3Lys, and the tRNA3Lys content in the virus increases from 8 to 15 molecules per 2 molecules of genomic RNA, with a decrease in viral tRNA1,2Lys from 12 to 5 molecules per 2 molecules of genomic RNA. Thus, the total number of molecules of tRNALys in the virion remains at 20. The alteration of the anticodon has little effect on the viral packaging of this mutant tRNA in spite of the fact that it no longer contains the modified base mcm 5s2U at position 34, and its ability to be aminoacylated is significantly impaired compared with that of wild-type tRNA3Lys. Viral particles which have incorporated either excess wild-type tRNA3Lys or mutant suppressor tRNA3Lys show no differences in viral infectivity compared with wild-type HIV-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

tRNA(3Lys) is a primer for reverse transcription in human immunodeficiency virus type 1 (HIV-1), and the anticodon of tRNA(3Lys) has been implicated in playing a role in both its placement onto the HIV-1 genome and its interaction with HIV-1 reverse transcriptase (RT). In this work, the anticodon in a tRNA(3Lys) gene was changed from UUU to CUA (tRNA(3Lys)Su+) or, in addition, G-73 was altered to A (tRNA(3Lys)Su+G73A). COS-7 cells were transfected with either wild-type or mutant tRNA(3Lys) genes, and both the wild-type and mutant tRNA(3Lys) produced were purified by using immobilized tRNA-specific hybridization probes. Each mutant tRNA(3Lys) was tested for its ability to prime reverse transcription in vitro, either alone or in competition with wild-type tRNA(3Lys). Short RT extensions of wild-type and mutant tRNALys could be distinguished from each other by their different mobilities in one-dimensional single-stranded conformation polymorphism polyacrylamide gel electrophoresis. These reverse transcription products show that heat-annealed tRNA(3Lys)Su+ has the same ability as heat-annealed wild-type tRNA(3Lys) to prime RT and competes equally well with wild-type tRNA(3Lys) for priming RT. tRNA(3Lys)Su+G73A has 60% of the wild-type ability to prime RT but competes poorly with wild-type tRNA(3Lys) for priming RT. However, the priming abilities of wild-type and mutant tRNA(3) are quite different when in vivo-placed tRNA is examined. HIV-1 produced in COS cells transfected with a plasmid containing both the HIV-1 proviral DNA and DNA coding for tRNA(3Lys)Su+ contains both endogenous, cellular wild-type tRNA(3Lys) and mutant tRNA(3Lys). When total viral RNA is used as the source of primer tRNA placed onto the genomic RNA in vivo, only wild-type tRNA(3Lys) is used as a primer. If the total viral RNA is first heated and exposed to hybridizing conditions, then both the wild-type and mutant tRNA(3Lys) act as primers for RT. These results indicate that the tRNA(3Lys)Su+ packaged into the virions is unable to act as a primer for RT, and a model is proposed to explain the disparate results between heat-annealed and in vivo-placed primer tRNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Production of the human immunodeficiency virus type 1 (HIV-1) Gag-Pol precursor protein results from a −1 ribosomal frameshifting event. In infected cells, this generates Gag and Gag-Pol in a ratio that is estimated to be 20:1, a ratio that is conserved among retroviruses. To examine the impact of this ratio on HIV-1 replication and viral assembly, we altered the Gag/Gag-Pol ratio in virus-producing cells by cotransfecting HIV-1 proviral DNA with an HIV-1 Gag-Pol expression vector. Two versions of the Gag-Pol expression vector were used; one contains an active protease [PR(+)], and the other contains an inactive protease [PR(−)]. In an attempt to produce viral particles with Gag/Gag-Pol ratios ranging from 20:21 to 20:1 (wild type), 293T cells were cotransfected with various ratios of wild-type proviral DNA and proviral DNA from either Gag-Pol expression vector. Viral particles derived from cells with altered Gag/Gag-Pol ratios via overexpression of PR(−) Gag-Pol showed a ratio-dependent defect in their virion protein profiles. However, the defects in virion infectivity were independent of the nature of the Gag-Pol expression vector, i.e., PR(+) or PR(−). Based on equivalent input of reverse transcriptase activity, we estimated that HIV-1 infectivity was reduced 250- to 1,000-fold when the Gag/Gag-Pol ratio in the virion-producing cells was altered from 20:1 to 20:21. Although virion RNA packaging was not affected by altering Gag/Gag-Pol ratios, changing the ratio from 20:1 to 20:21 progressively reduced virion RNA dimer stability. The impact of the Gag/Gag-Pol ratio on virion RNA dimerization was amplified when the Gag-Pol PR(−) expression vector was expressed in virion-producing cells. Virions produced from cells expressing Gag and Gag-Pol PR(−) in a 20:21 ratio contained mainly monomeric RNA. Our observations provide the first direct evidence that, in addition to proteolytic processing, the ratio of Gag/Gag-Pol proteins is also important for RNA dimerization and that stable RNA dimers are not required for encapsidation of genomic RNA in HIV-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The packaging of a mature dimeric RNA genome is an essential step in human immunodeficiency virus type 1 (HIV-1) replication. We have previously shown that overexpression of a protease (PR)-inactive HIV-1 Gag-Pro-Pol precursor protein generates noninfectious virions that contain mainly monomeric RNA (M. Shehu-Xhilaga, S. M. Crowe, and J. Mak, J. Virol. 75:1834-1841, 2001). To further define the contribution of HIV-1 Gag and Gag-Pro-Pol to RNA maturation, we analyzed virion RNA dimers derived from Gag particles in the absence of Gag-Pro-Pol. Compared to wild-type (WT) dimeric RNAs, these RNA dimers have altered mobility and low stability under electrophoresis conditions, suggesting that the HIV-1 Gag precursor protein alone is not sufficient to stabilize the dimeric virion RNA structure. The inclusion of an active viral PR, without reverse transcriptase (RT) and integrase (IN), rescued the stability of the virion RNA dimers in the Gag particles but did not restore the mobility of the RNAs, suggesting that RT and IN are also required for virion RNA dimer maturation. Thin-section electron microscopy showed that viral particles deficient in RT and IN contain empty cone-shaped cores. The abnormal core structure indicates a requirement for Gag-Pro-Pol packaging during core maturation. Supplementing viral particles with either RT or IN via Vpr-RT or Vpr-IN alone did not correct the conformation of the dimer RNAs, whereas expression of both RT and IN in trans as a Vpr-RT-IN fusion restored RNA dimer conformation to that of the WT virus and also restored the electron-dense, cone-shaped virion core characteristic of WT virus. Our data suggest a role for RT-IN in RNA dimer conformation and the formation of the electron-dense viral core.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background : Rhabdoid tumors are rare cancers of early childhood arising in the kidney, central nervous system and other organs. The majority are caused by somatic inactivating mutations or deletions affecting the tumor suppressor locus SMARCB1 [OMIM 601607]. Germ-line SMARCB1 inactivation has been reported in association with rhabdoid tumor, epitheloid sarcoma and familial schwannomatosis, underscoring the importance of accurate mutation screening to ascertain recurrence and transmission risks. We describe a rapid and sensitive diagnostic screening method, using high resolution melting (HRM), for detecting sequence variations in SMARCB1. Methods : Amplicons, encompassing the nine coding exons of SMARCB1, flanking splice site sequences and the 5' and 3' UTR, were screened by both HRM and direct DNA sequencing to establish the reliability of HRM as a primary mutation screening tool. Reaction conditions were optimized with commercially available HRM mixes. Results : The false negative rate for detecting sequence variants by HRM in our sample series was zero. Nine amplicons out of a total of 140 (6.4%) showed variant melt profiles that were subsequently shown to be false positive. Overall nine distinct pathogenic SMARCB1 mutations were identified in a total of 19 possible rhabdoid tumors. Two tumors had two distinct mutations and two harbored SMARCB1 deletion. Other mutations were nonsense or frame-shifts. The detection sensitivity of the HRM screening method was influenced by both sequence context and specific nucleotide change and varied from 1: 4 to 1:1000 (variant to wild-type DNA). A novel method involving digital HRM, followed by re-sequencing, was used to confirm mutations in tumor specimens containing associated normal tissue. Conclusions : This is the first report describing SMARCB1 mutation screening using HRM. HRM is a rapid, sensitive and inexpensive screening technology that is likely to be widely adopted in diagnostic laboratories to facilitate whole gene mutation screening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is an urgent need for a human immunodeficiency virus (HIV) vaccine that induces robust mucosal immunity. CD8+ cytotoxic T lymphocytes (CTLs) apply substantial antiviral pressure, but CTLs to individual epitopes select for immune escape variants in both HIV in humans and SIV in macaques. Inducing multiple simian immunodeficiency virus (SIV)-specific CTLs may assist in controlling viremia. We vaccinated 10 Mane-A1*08401+ female pigtail macaques with recombinant influenza viruses expressing three Mane-A1*08401-restricted SIV-specific CTL epitopes and subsequently challenged the animals, along with five controls, intravaginally with SIVmac251. Seroconversion to the influenza virus vector resulted and small, but detectable, SIV-specific CTL responses were induced. There was a boost in CTL responses after challenge but no protection from high-level viremia or CD4 depletion was observed. All three CTL epitopes underwent a coordinated pattern of immune escape during early SIV infection. CTL escape was more rapid in the vaccinees than in the controls at the more dominant CTL epitopes. Although CTL escape can incur a "fitness" cost to the virus, a putative compensatory mutation 20 amino acids upstream from an immunodominant Gag CTL epitope also evolved soon after the primary CTL escape mutation. We conclude that vaccines based only on CTL epitopes will likely be undermined by rapid evolution of both CTL escape and compensatory mutations. More potent and possibly broader immune responses may be required to protect pigtail macaques from SIV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the development of a microfluidic methodology, using RNA extraction and reverse transcription PCR, for investigating expression levels of cytochrome P450 genes. Cytochrome P450 enzymes are involved in the metabolism of xenobiotics, including many commonly prescribed drugs, therefore information on their expression is useful in both pharmaceutical and clinical settings. RNA extraction, from rat liver tissue or primary rat hepatocytes, was performed using a silica-based solid-phase extraction technique. Following elution of the purified RNA, amplification of target sequences for the housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the cytochrome P450 gene CYP1A2, was carried out using a one-step reverse transcription PCR. Once the microfluidic methodology had been optimized, analysis of control and 3-methylcholanthrene-induced primary rat hepatocytes were used to evaluate the system. As expected, GAPDH was consistently expressed, whereas CYP1A2 levels were found to be raised in the drug-treated samples. The proposed system offers an initial platform for development of both rapid throughput analyzers for pharmaceutical drug screening and point-of-care diagnostic tests to aid provision of drug regimens, which can be tailor-made to the individual patient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pathogens have been hypothesized to play a major role in host diversity and speciation. Susceptibility of hybrid hosts to pathogens is thought to be a common phenomenon that could promote host population divergence and subsequently speciation. However, few studies have tested for pathogen infection across animal hybrid zones while testing for codivergence of the pathogens in the hybridizing host complex. Over 8 y, we studied natural infection by a rapidly evolving single-strand DNA virus, beak and feather diseases virus (BFDV), which infects parrots, exploiting a host-ring species complex (Platycercus elegans) in Australia. We found that host subspecies and their hybrids varied strikingly in both BFDV prevalence and load: both hybrid and phenotypically intermediate subspecies had lower prevalence and load compared with parental subspecies, while controlling for host age, sex, longitude and latitude, as well as temporal effects. We sequenced viral isolates throughout the range, which revealed patterns of genomic variation analogous to Mayr's ring-species hypothesis, to our knowledge for the first time in any host-pathogen system. Viral phylogeny, geographic location, intraspecific host density, and parrot community diversity and composition did not explain the differences in BFDV prevalence or load between subpopulations. Overall, our analyses suggest that functional host responses to infection, or force of infection, differ between subspecies and hybrids. Our findings highlight the role of host hybridization and clines in altering host-pathogen interactions, dynamics that can have important implications for models of speciation with gene flow, and offer insights into how pathogens may adapt to diverging host populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The detection of avian viruses in wild populations has considerable conservation implications. For DNA-based studies, feathers may be a convenient sample type for virus screening and are, therefore, an increasingly common technique. This is despite recent concerns about DNA quality, ethics, and a paucity of data comparing the reliability and sensitivity of feather sampling to other common sample types such as blood. Alternatively, skeletal muscle tissue may offer a convenient sample to collect from dead birds, which may reveal viraemia. Here, we describe a probe-based quantitative real-time PCR for the relative quantification of beak and feather disease virus (BFDV), a pathogen of serious conservation concern for parrots globally. We used this method to test for BFDV in wild crimson rosellas (Platycercus elegans), and compared three different sample types. We detected BFDV in samples from 29 out of 84 individuals (34.5%). However, feather samples provided discordant results concerning virus presence when compared with muscle tissue and blood, and estimates of viral load varied somewhat between different sample types. This study provides evidence for widespread infection of BFDV in wild crimson rosellas, but highlights the importance of sample type when generating and interpreting qualitative and quantitative avian virus data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diagnosis and control of Foot-and-mouth disease virus (FMDV) requires rapid and sensitive diagnostic tests. Two antibody enzyme-linked immunosorbent assay (ELISA) kits, Ceditest® FMDV-NS for the detection of antibodies against the nonstructural proteins of all FMDV serotypes and Ceditest® FMDV type O for the detection of antibodies against serotype O, were evaluated under African endemic conditions where the presence of multiple serotypes and the use of nonpurified vaccines complicate serological diagnosis. Serum samples from 218 African buffalo, 758 cattle, 304 goats, and 88 sheep were tested using both kits, and selected samples were tested not only in serotype-specific ELISAs for antibodies against primarily FMDV serotype O, but also against other serotypes. The FMDV-NS assay detected far more positive samples (93%) than the FMDV type O assay (30%) in buffalo (P < 0.05), with predominant antibodies against the South African Territories (SAT) serotypes, while the seroprevalence was generally comparable in cattle with antibodies against serotype O elicited by infection and/or vaccination. However, some districts had higher seroprevalence using the FMDV type O assay indicating vaccination without infection, while 1 cattle herd with antibodies against the SAT serotypes had far more positive samples (85%) using the FMDV-NS versus the FMDV type O (10%), consistent with the latter test's lower sensitivity for antibodies against SAT serotypes. Based on the current investigation, the FMDV type O ELISA may be limited by the presence of SAT serotypes. The FMD NS assay worked well as a screening test for antibodies against all FMDV serotypes present in Uganda; however, as long as nonpurified vaccines are applied in the region, this test cannot be used to differentiate between vaccinated and infected animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipid extraction is an integral part of biodiesel production, as it facilitates the release of fatty acids from algal cells. To utilise thraustochytrids as a potential source for lipid production. We evaluated the extraction efficiency of various solvents and solvent combinations for lipid extraction from Schizochytrium sp. S31 and Thraustochytrium sp. AMCQS5-5. The maximum lipid extraction yield was 22% using a chloroform:methanol ratio of 2:1. We compared various cell disruption methods to improve lipid extraction yields, including grinding with liquid nitrogen, bead vortexing, osmotic shock, water bath, sonication and shake mill. The highest lipid extraction yields were obtained using osmotic shock and 48.7% from Schizochytrium sp. S31 and 29.1% from Thraustochytrium sp. AMCQS5-5. Saturated and monounsaturated fatty acid contents were more than 60% in Schizochytrium sp. S31 which suggests their suitability for biodiesel production.