86 resultados para Phenotypic plasticity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study a method for evaluating phenotypic sex in Nile tilapia was validated. A technique that uses aceto-carmine squash mounts to stain the entire gonadal tissue for microscopic examination (Method 2- squash mounts) was compared with a technique based on traditional histology. Approximately 2600 Nile tilapia fry weighing and measuring, respectively, between 0.25-2.50g and 26-53mm, aged 35 to 60 days after hatch (DAH), were sexed using this methodology. In situ microscopic examination on the gonads was also performed. A reliable sexing using squash mount was possible with fish weighing more than 0.500g, 45-47 DAH. Results from microscopic observation using the aceto-carmine stain coincided 100% with the histological examination. Male gonadal tissue was characterized by the presence of cysts containing spermatogonia and spermatocytes, while females were easily identified by the presence of oocytes at the perinucleolar stage. The technique proved to be efficient not only in terms of evaluating sex proportion in fish but also because it allows immediate evaluation of gonadal sex and demands less time and labour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose:
The objective of this study was to assess the effect of anodal transcranial direct current stimulation (a-tDCS) on voluntary dynamic strength and cortical plasticity when applied during a 3-wk strength training program for the wrist extensors.

Methods:
Thirty right-handed participants were randomly allocated to the tDCS, sham, or control group. The tDCS and sham group underwent 3 wk of heavy-load strength training of the right wrist extensors, with 20 min of a-tDCS (2 mA) or sham tDCS applied during training (double blinded). Outcome measures included voluntary dynamic wrist extension strength, muscle thickness, corticospinal excitability, short-interval intracortical inhibition (SICI), and silent period duration.

Results:
Maximal voluntary strength increased in both the tDCS and sham groups (14.89% and 11.17%, respectively, both P < 0.001). There was no difference in strength gain between the two groups (P = 0.229) and no change in muscle thickness (P = 0.15). The tDCS group demonstrated an increase in motor-evoked potential amplitude at 15%, 20%, and 25% above active motor threshold, which was accompanied by a decrease in SICI during 50% maximal voluntary isometric contraction and 20% maximal voluntary isometric contraction (all P < 0.05). Silent period decreased for both the tDCS and sham groups (P < 0.001).

Conclusion:
The application of a-tDCS in combination with strength training of the wrist extensors in a healthy population did not provide additional benefit for voluntary dynamic strength gains when compared with standard strength training. However, strength training with a-tDCS appears to differentially modulate cortical plasticity via increases in corticospinal excitability and decreases in SICI, which did not occur following strength training alone

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcranial direct current stimulation (tDCS) is a noninvasive technique that modulates the excitability of neurons within the motor cortex (M1). Although the aftereffects of anodal tDCS on modulating cortical excitability have been described, there is limited data describing the outcomes of different tDCS intensities on intracortical circuits. To further elucidate the mechanisms underlying the aftereffects of M1 excitability following anodal tDCS, we used transcranial magnetic stimulation (TMS) to examine the effect of different intensities on cortical excitability and short-interval intracortical inhibition (SICI). Using a randomized, counterbalanced, crossover design, with a one-week wash-out period, 14 participants (6 females and 8 males, 22–45 years) were exposed to 10 minutes of anodal tDCS at 0.8, 1.0, and 1.2 mA. TMS was used to measure M1 excitability and SICI of the contralateral wrist extensor muscle at baseline, immediately after and 15 and 30 minutes following cessation of anodal tDCS. Cortical excitability increased, whilst SICI was reduced at all time points following anodal tDCS. Interestingly, there were no differences between the three intensities of anodal tDCS on modulating cortical excitability or SICI. These results suggest that the aftereffect of anodal tDCS on facilitating cortical excitability is due to the modulation of synaptic mechanisms associated with long-term potentiation and is not influenced by different tDCS intensities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used time-depth recorders to measure depth utilisation in gravid green turtles (Chelonia mydas) during the internesting period at northern Cyprus (Mediterranean), a nesting area where individuals feed, and at Ascension Island (mid-Atlantic), a nesting area where individuals fast. There were contrasting patterns of depth utilisation between the two sites, illustrating that the behaviour of this species is shaped by local conditions. For example, the amount of time spent shallower than 4 m was 90% at Cyprus but only 31% at Ascension Island, and there was a clear difference between the mean depth at Cyprus (2.7 m, n=9 internesting intervals) versus Ascension Island (9.5 m, n=6 internesting intervals) (t 5=5.92, P=0.002). At Cyprus, turtles spent the greatest percentage of their time at very shallow depths, where surveys reveated a high abundance of seagrass on which this population feeds. In contrast, the deeper distribution at Ascension Island may reflect the preferred depth for resting on the seabed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurodegeneration accompanies the process of natural aging, reducing the ability to perform functional daily activities. Transcranial direct current stimulation (tDCS) alters neuronal excitability and motor performance; however its beneficial effect on the induction of primary motor cortex (M1) plasticity in older adults is unclear. Moreover, little is known as to whether the tDCS electrode arrangement differentially affects M1 plasticity and motor performance in this population. In a double-blinded, cross-over trial, we compared unilateral, bilateral and sham tDCS combined with visuomotor tracking, on M1 plasticity and motor performance of the non-dominant upper limb, immediately post and 30 min following stimulation. We found (a) unilateral and bilateral tDCS decreased tracking error by 12–22% at both time points; with sham decreasing tracking error by 10% at 30 min only, (b) at both time points, motor evoked potentials (MEPs) were facilitated (38–54%) and short-interval intracortical inhibition was released (21–36%) for unilateral and bilateral conditions relative to sham, (c) there were no differences between unilateral and bilateral conditions for any measure. These findings suggest that tDCS modulated elements of M1 plasticity, which improved motor performance irrespective of the electrode arrangement. The results provide preliminary evidence indicating that tDCS is a safe non-invasive tool to preserve or improve neurological function and motor control in older adults.