132 resultados para pyrimidine metabolism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and sensitive HPLC method was developed to simultaneously determine CPT-11 and its major metabolite SN-38 in culture media and cell lysates. Camptothecin (CPT) was used as internal standard (I.S.). Compounds were eluted with acetonitrile–50 mM disodium hydrogen phosphate buffer containing 10 mM sodium 1-heptane-sulfonate, with the pH adjusted to 3.0 using 85% (w/v) orthophosphoric acid (27/73, v/v) by a Hyperclon ODS (C18) column (200 mm × 4.6 mm i.d.), with detection at excitation and emission wavelengths of 380 and 540 nm, respectively. The average extraction efficiencies were 96.9–108.3% for CPT-11 in culture media and 94.3–107.2% for CPT-11 in cell lysates; and 87.7–106.8% for SN-38 in culture media and 90.1–105.6% for SN-38 in cell lysates. Within- and between-day precision and accuracy varied from 0.1 to 10.3%. The limit of quantitation (precision and accuracy <20%) was 5.0 and 2.0 ng/ml for CPT-11 and 1.0 and 0.5 ng/ml for SN-38 in culture media and cell lysates, respectively. This method was successfully applied to quantitate the cellular accumulation and metabolism of CPT-11 and SN-38 in H4-II-E, a rat hepatoma cell line.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the influence of heat stress on the regulation of skeletal muscle carbohydrate metabolism, six active, but not specifically trained, men performed 5 min of cycling at a power output eliciting 70% maximal O(2) uptake in either 20 degrees C (Con) or 40 degrees C (Heat) after 20 min of passive exposure to either environmental condition. Although muscle temperature (T(mu)) was similar at rest when comparing trials, 20 min of passive exposure and 5 min of exercise increased (P < 0.05) T(mu) in Heat compared with Con (37.5 +/- 0.1 vs. 36.9 +/- 0.1 degrees C at 5 min for Heat and Con, respectively). Rectal temperature and plasma epinephrine were not different at rest, preexercise, or 5 min of exercise between trials. Although intramuscular glycogen phosphorylase and pyruvate dehydrogenase activity increased (P < 0.05) at the onset of exercise, there were no differences in the activities of these regulatory enzymes when comparing Heat with Con. Accordingly, glycogen use in the first 5 min of exercise was not different when comparing Heat with Con. Similarly, no differences in intramuscular concentrations of glucose 6-phosphate, lactate, pyruvate, acetyl-CoA, creatine, phosphocreatine, or ATP were observed at any time point when comparing Heat with Con. These results demonstrate that, whereas mild heat stress results in a small difference in contracting T(mu), it does not alter the activities of the key regulatory enzymes for carbohydrate metabolism or glycogen use at the onset of exercise, when plasma epinephrine levels are unaltered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of carbohydrate or water ingestion on metabolism were investigated in seven male subjects during two running and two cycling trials lasting 60 min at individual lactate threshold using indirect calorimetry, U-14C-labeled tracer-derived measures of the rates of oxidation of plasma glucose, and direct determination of mixed muscle glycogen content from the vastus lateralis before and after exercise. Subjects ingested 8 ml/kg body mass of either a 6.4% carbohydrate-electrolyte solution (CHO) or water 10 min before exercise and an additional 2 ml/kg body mass of the same fluid after 20 and 40 min of exercise. Plasma glucose oxidation was greater with CHO than with water during both running (65 ± 20 vs. 42 ± 16 g/h; P < 0.01) and cycling (57 ± 16 vs. 35 ± 12 g/h; P < 0.01). Accordingly, the contribution from plasma glucose oxidation to total carbohydrate oxidation was greater during both running (33 ± 4 vs. 23 ± 3%; P < 0.01) and cycling (36 ± 5 vs. 22 ± 3%; P < 0.01) with CHO ingestion. However, muscle glycogen utilization was not reduced by the ingestion of CHO compared with water during either running (112 ± 32 vs. 141 ± 34 mmol/kg dry mass) or cycling (227 ± 36 vs. 216 ± 39 mmol/kg dry mass). We conclude that, compared with water, 1) the ingestion of carbohydrate during running and cycling enhanced the contribution of plasma glucose oxidation to total carbohydrate oxidation but 2) did not attenuate mixed muscle glycogen utilization during 1 h of continuous submaximal exercise at individual lactate threshold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the effect of glycerol ingestion on fluid homeostasis, thermoregulation, and metabolism during rest and exercise. Six endurance-trained men ingested either 1 g glycerol in 20 ml H2O.kg-1 body weight (bw) (GLY) or 20 ml H2O.kg-1bw (CON) in a randomized double-blind fashion, 120 min prior to undertaking 90 min of steady state cycle exercise (SS) at 98 % of lactate threshold in dry heat (35 degrees C, 30 % RH), with ingestion of CHO-electrolyte beverage (6 % CHO) at 15-min intervals. A 15-min cycle, where performance was quantified in kJ, followed (PC). Pre-exercise urine volume was lower in GLY than CON (1119 ± 97 vs. 1503 ± 146 ml· 120 min-1; p < .05). Heart rate was lower (p < .05) throughout SS in GLY, while forearm blood flow was higher (17.1 ± 1.5 vs. 13.7 ± 3.0 ml.100 g tissue·min-1; p < .05) and rectal  temperature lower (38.7 ± 0.1 vs. 39.1 ± 0.1 ° C; p < .05) in GLY late in SS. Despite these changes, skin and muscle temperatures and circulating catecholamines were not different between trials. Accordingly, no differences were observed in muscle glycogenolysis, lactate accumulation, adenine nucleotide, and phosphocreatine degradation or inosine 5'-monophosphate accumulation when comparing GLY with CON. Of note, the work performed during PC was 5 % greater in GLY (252 ± 10 vs. 240 ± 9 kJ; p < .05). These results demonstrate that glycerol, when ingested with a bolus of water 2 hours prior to exercise, results in fluid retention, which is capable of reducing cardiovascular strain and enhancing thermoregulation. Furthermore, this practice increases exercise performance in the heat by mechanisms other than alterations in muscle metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Sodium bicarbonate (NaHCO3) ingestion has been shown to increase both muscle glycogenolysis and glycolysis during brief submaximal exercise. These changes may be detrimental to performance during more prolonged, exhaustive exercise. This study examined the effect of NaHCO3 ingestion on muscle metabolism and performance during intense endurance exercise of ~60 min in seven endurance-trained men. Methods: Subjects ingested 0.3 g·kg-1 body mass of either NaHCO3 or CaCO3 (CON) 2 h before performing 30 min of cycling exercise at 77 ± 1% [latin capital V with dot above]O2peak followed by completion of 469 ± 21 kJ as quickly as possible (~30 min, ~80% [latin capital V with dot above]O2peak). Results: Immediately before, and throughout exercise, arterialized-venous plasma HCO3- concentrations were higher (P < 0.05) whereas plasma and muscle H+ concentrations were lower (P < 0.05) in NaHCO3 compared with CON. Blood lactate concentrations were higher (P < 0.05) during exercise in NaHCO3, but there was no difference between trials in muscle glycogen utilization or muscle lactate content during exercise. Reductions in PCr and ATP and increases in muscle Cr during exercise were also unaffected by NaHCO3 ingestion. Accordingly, exercise performance time was not different between treatments. Conclusion: NaHCO3 ingestion resulted in a small muscle alkalosis but had no effect on muscle metabolism or intense endurance exercise performance in well-trained men.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AMPK plays a central role in influencing fuel usage and selection. The aim of this study was to analyze the impact of low-dose AMP analog 5-aminoimidazole-4-carboxamide-1-ß-D-ribosyl monophosphate (ZMP) on whole body glucose turnover and skeletal muscle (SkM) glucose metabolism. Dogs were restudied after prior 48-h fatty acid oxidation (FAOX) blockade by methylpalmoxirate (MP; 5 x 12 hourly 10 mg/kg doses). During the basal equilibrium period (0–150 min), fasting dogs (n = 8) were infused with [3-3H]glucose followed by either 2-h saline or AICAR (1.5–2.0 mg·kg–1·min–1) infusions. SkM was biopsied at completion of each study. On a separate day, the same protocol was undertaken after 48-h in vivo FAOX blockade. The AICAR and AICAR + MP studies were repeated in three chronic alloxan-diabetic dogs. AICAR produced a transient fall in plasma glucose and increase in insulin and a small decline in free fatty acid (FFA). Parallel increases in hepatic glucose production (HGP), glucose disappearance (Rd tissue), and glycolytic flux (GF) occurred, whereas metabolic clearance rate of glucose (MCRg) did not change significantly. Intracellular SkM glucose, glucose 6-phosphate, and glycogen were unchanged. Acetyl-CoA carboxylase (ACC~pSer221) increased by 50%. In the AICAR + MP studies, the metabolic responses were modified: the glucose was lower over 120 min, only minor changes occurred with insulin and FFA, and HGP and Rd tissue responses were markedly attenuated, but MCRg and GF increased significantly. SkM substrates were unchanged, but ACC~pSer221 rose by 80%. Thus low-dose AICAR leads to increases in HGP and SkM glucose uptake, which are modified by prior FAox blockade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AMP-activated protein kinase (AMPK) is proposed to stimulate fat and carbohydrate catabolism to maintain cellular energy status. Recent studies demonstrate that pharmacologic activation of AMPK and mutations in the enzyme are associated with elevated muscle glycogen content in vivo. Our purpose was to determine the mechanism for increased muscle glycogen associated with AMPK activity in vivo. AMPK activity and glycogen metabolism were studied in red and white gastrocnemius muscles from rats treated with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) in vivo, and also in muscles incubated with AICAR in vitro. In vivo AICAR treatment reduced blood glucose and increased blood lactate compared with basal values. AICAR increased muscle α2 AMPK activity, glycogen, and glucose-6-phosphate concentrations. Glycogen synthase activity was increased in the red gastrocnemius but was decreased in the white gastrocnemius. Glycogen phosphorylase activity increased in both muscles, with an inhibition initially observed in the red gastrocnemius. In vitro incubation with AICAR activated α2 AMPK but had no effect on either glycogen synthase or glycogen phosphorylase. These results suggest that AICAR treatment does not promote glycogen accumulation in skeletal muscle in vivo by altering glycogen synthase and glycogen phosphorylase. Rather, the increased glycogen is due to the well-known effects of AICAR to increase glucose uptake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human and rodent uncoupling protein (UCP)3 mRNA is upregulated after acute exercise. Moreover, exercise increases plasma levels of free fatty acid (FFA), which are also known to upregulate UCP3. We investigated whether the upregulation of UCP3 after exercise is an effect of exercise per se or an effect of FFA levels or substrate oxidation. Seven healthy untrained men [age: 22.7 ± 0.6 yr; body mass index: 23.8 ± 1.0 kg/m2; maximal O2 uptake (VO2 max): 3,852 ± 211 ml/min] exercised at 50% VO2 max for 2 h and then rested for 4 h. Muscle biopsies and blood samples were taken before and immediately after 2 h of exercise and 1 and 4 h in the postexercise period. To modulate plasma FFA levels and fat/glucose oxidation, the experiment was performed two times, one time with glucose ingestion and one time while fasting. UCP3 mRNA and UCP3 protein were determined by RT-competitive PCR and Western blot. In the fasted state, plasma FFA levels significantly increased (P < 0.0001) during exercise (293 ± 25 vs. 1,050 ± 127 μmol/l), whereas they were unchanged after glucose ingestion (335 ± 54 vs. 392 ± 74 µmol/l). Also, fat oxidation was higher after fasting (P < 0.05), whereas glucose oxidation was higher after glucose ingestion (P < 0.05). In the fasted state, UCP3L mRNA expression was increased significantly (P < 0.05) 4 h after exercise (4.6 ± 1.2 vs. 9.6 ± 3.3 amol/µg RNA). This increase in UCP3L mRNA expression was prevented by glucose ingestion. Acute exercise had no effect on UCP3 protein levels. In conclusion, we found that acute exercise had no direct effect on UCP3 mRNA expression. Abolishing the commonly observed increase in plasma FFA levels and/or fatty acid oxidation during and after exercise prevents the upregulation of UCP3 after acute exercise. Therefore, the previously observed increase in UCP3 expression appears to be an effect of prolonged elevation of plasma FFA levels and/or increased fatty acid oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxazaphosphorines including cyclophosphamide (CPA), ifosfamide (IFO), and trofosfamide represent an important group of therapeutic agents due to their substantial antitumor and immuno-modulating activity. CPA is widely used as an anticancer drug, an immunosuppressant, and for the mobilization of hematopoetic progenitor cells from the bone marrow into peripheral blood prior to bone marrow transplantation for aplastic anemia, leukemia, and other malignancies. New oxazaphosphorines derivatives have been developed in an attempt to improve selectivity and response with reduced toxicity. These derivatives include mafosfamide (NSC 345842), glufosfamide (D19575, β-D-glucosylisophosphoramide mustard), NSC 612567 (aldophosphamide perhydrothiazine), and NSC 613060 (aldophosphamide thiazolidine). This review highlights the metabolism and transport of these oxazaphosphorines (mainly CPA and IFO, as these two oxazaphosphorine drugs are the most widely used alkylating agents) and the clinical implications. Both CPA and IFO are prodrugs that require activation by hepatic cytochrome P450 (CYP)-catalyzed 4-hydroxylation, yielding cytotoxic nitrogen mustards capable of reacting with DNA molecules to form crosslinks and lead to cell apoptosis and/or necrosis. Such prodrug activation can be enhanced within tumor cells by the CYP-based gene directed-enzyme prodrug therapy (GDEPT) approach. However, those newly synthesized oxazaphosphorine derivatives such as glufosfamide, NSC 612567 and NSC 613060, do not need hepatic activation. They are activated through other enzymatic and/or non-enzymatic pathways. For example, both NSC 612567 and NSC 613060 can be activated by plain phosphodiesterase (PDEs) in plasma and other tissues or by the high-affinity nuclear 3'-5' exonucleases associated with DNA polymerases, such as DNA polymerases and ε. The alternative CYP-catalyzed inactivation pathway by N-dechloroethylation generates the neurotoxic and nephrotoxic byproduct chloroacetaldehyde (CAA). Various aldehyde dehydrogenases (ALDHs) and glutathione S-transferases (GSTs) are involved in the detoxification of oxazaphosphorine metabolites. The metabolism of oxazaphosphorines is auto-inducible, with the activation of the orphan nuclear receptor pregnane X receptor (PXR) being the major mechanism. Oxazaphosphorine metabolism is affected by a number of factors associated with the drugs (e.g., dosage, route of administration, chirality, and drug combination) and patients (e.g., age, gender, renal and hepatic function). Several drug transporters, such as breast cancer resistance protein (BCRP), multidrug resistance associated proteins (MRP1, MRP2, and MRP4) are involved in the active uptake and efflux of parental oxazaphosphorines, their cytotoxic mustards and conjugates in hepatocytes and tumor cells. Oxazaphosphorine metabolism and transport have a major impact on pharmacokinetic variability, pharmacokinetic-pharmacodynamic relationship, toxicity, resistance, and drug interactions since the drug-metabolizing enzymes and drug transporters involved are key determinants of the pharmacokinetics and pharmacodynamics of oxazaphosphorines. A better understanding of the factors that affect the metabolism and transport of oxazaphosphorines is important for their optional use in cancer chemotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: The effect of chronic treatment with acarbose on fasting plasma glucose, insulin, triglyceride, cholesterol and free fatty acid (FFA) concentrations, as well as on the glucose and insulin excursions during oral glucose tolerance test (OGTT), in obese diabetic Wistar (WDF) rats was investigated. Methods: Forty-five mature male WDF rats were randomly distributed to one of the three treatment groups (no acarbose, 20 mg and 40 mg of acarbose/100 g of chow, respectively). After 3.5, 7.5 and 11.5 months, animals were tested for glucose tolerance by means of an OGTT, and their respective metabolic profiles were determined. Control determinations were done in obese and age-matched lean animals before the start of the trial. Results: The WDF rats exhibit higher body weight and fasting blood glucose, insulin, triglyceride and cholesterol concentrations compared to lean animals. Moreover, they show marked glucose intolerance as indicated by the glucose and insulin excursions during OGTT. Interestingly, in both treated and untreated animals, a reversion of the hyperglycaemic state as well as an improvement of the glucose tolerance is observed. However, whereas in the group receiving no acarbose this is accounted for by dramatic increases in fasting plasma insulin concentrations and insulin secretion during OGTT (as indicated by the ΔInsulin area), in rats treated with acarbose the reversion of the diabetic state takes place without increments in hormone concentration. In addition, rats treated with acarbose for 3.5 and 7.5 months show lower plasma triglyceride and FFA concentrations, and the same was observed for cholesterol at the highest dosage of the drug. Conclusions: Chronic treatment with acarbose of WDF rats improves the glycaemic and lipidic control as well as the glucose tolerance, with a lower demand of pancreatic insulin than in untreated rats. This data suggests that the long-term modulation of glucose and insulin excursions after meals improves the insulin sensitivity in this rat strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ginkgo biloba is one of the most popular herbal medicines in the world, due to its purported pharmacological effects, including memory-enhancing, cognition-improving, and antiplatelet effects. When used in the elderly, Ginkgo has a high potential for interactions with cardiovascular drugs. This study aimed to investigate the effects of the standard Ginkgo biloba extract (EGB 761) treatment on the pharmacokinetics of propranolol and its metabolism to form Ndesisopropylpropranolol (NDP) in rats. We also examined the activity and expression of cytochrome P450 (CYP) 1A and other CYPs in rats treated with EGb 761 at 10 and 100 mg/kg/day for 10 days. A single oral dose of propranolol (10 mg/kg) was administered on day 11 and the concentrations of both propranolol and NDP were determined using validated liquid chromatography-mass spectrometry (LC-MS) methods. The levels of mRNA and protein of various CYPs were determined by RT-PCR and Western blotting analysis, respectively. Pretreatment of EGb 761 at 100 mg/kg, but not 10 mg/kg, for 10 days significantly reduced the area under the plasma concentration-time curve (AUC) and maximum plasma concentration (C max) of propranolol, whereas those values of NDP were significantly increased. CYP1A1, 1A2, 2B1/2, and 3A1 activities and gene expression in the rat liver were significantly increased in a dose-dependent manner by pretreatment with EGb 761. The ex-vivo formation of NDP in liver microsomes from rats pretreated with EGb 761 was markedly enhanced. The formation of NDP from propranolol in liver microsomes was significantly inhibited by α- naphthoflavone (ANF, a selective CYP1A2 inhibitor), but not by quinidine (a CYP2D inhibitor). These results indicated that EGb 761 pretreatment decreased the plasma concentrations of propranolol by accelerated conversion of parental drug to NDP due to induction of CYP1A2. EGb 761 pretreatment also significantly induced CYP2B1/2 and CYP3A1, suggesting potential interactions with substrate drugs for these two enzymes. Further study is needed to explore the potential for gingko-drug interactions and the clinical impact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sulfonation is an important reaction in the metabolism of numerous xenobiotics, drugs, and endogenous compounds. A supergene family of enzymes called sulfotransferases (SULTs) catalyze this reaction. In most cases, the addition of a sulfonate moiety to a compound increases its water solubility and decreases its biological activity. However, many of these enzymes are also capable of bioactivating procarcinogens to reactive electrophiles. In humans three SULT families, SULT1, SULT2, and SULT4, have been identified that contain at least thirteen distinct members. SULTs have a wide tissue distribution and act as a major detoxification enzyme system in adult and the developing human fetus. Nine crystal structures of human cytosolic SULTs have now been determined, and together with site-directed mutagenesis experiments and molecular modeling, we are now beginning to understand the factors that govern distinct but overlapping substrate specificities. These studies have also provided insight into the enzyme kinetics and inhibition characteristics of these enzymes. The regulation of human SULTs remains as one of the least explored areas of research in the field, though there have been some
recent advances on the molecular transcription mechanism controlling the individual SULT promoters. Interindividual variation in sulfonation capacity may be important in determining an individual’s response to xenobiotics, and recent studies have begun to suggest roles for SULT polymorphism in disease susceptibility. This review aims to provide a summary of our present understanding of the function of human cytosolic sulfotransferases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background – It has been recognized that specific fatty acids have the ability to directly influence the abundance of gene transcripts in organs such as the liver. However little comparison has been made between the effects of common dietary of fatty acids and there influence on gene expression.
Objectives – To determine the effect of diets rich saturated, monounsaturated and polyunsaturated on gene transcripts associated with liver fat metabolism. Specifically how these three classes of fatty acids influence mRNA levels of key transcriptional regulators (PGC1a, PPARa, PPARd, SREBP1C & ChREBP), fat oxidative (ACO, LCPT1, HMG-CoA lyase & UCP-2) and fat synthetic (ACC, MCD, GPAT & malic enzyme) genes were investigated.
Design - Rats (n=32) were evenly divided into four groups; a saturated fat diet, a monounsaturated fat diet, a polyunsaturated fat diet (each diet contained 23% fat) and standard rat chow (7% fat) diet and fed for 12 weeks. Real-time PCR analysis was performed on liver tissue.
Outcomes – PGC1a and SREBP1C increased 1.9 fold or greater in all groups. Conversely, PPARa, PPARd and ChREBP demonstrated variable changes with diet composition. Monounsaturated and polyunsaturated fat increased HMG-CoA lyase 2.8 fold, a response that was absent in the saturated fat fed animals. UCP-2 was decrease 3.0 fold by all dietary treatments. Malic enzyme was increased 2.8 and 2.4 fold with saturated and polyunsaturated diets respectively, yet was unaltered by the monounsaturated fat diet.
Conclusion – Modifications in common dietary fat composition initiated divergent gene responses in liver. These alterations were complex, with no uniform alteration in transcription factors with closely related functions (PPARfamily) and genes encoding proteins within the same metabolic pathway (fat oxidation or fat synthesis). Further studies are necessary to identify the predominant mechanisms regulating these differences in gene expression.