62 resultados para population structure


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Allozyme and Random Amplified Polymorphic DNA (RAPD) variation was surveyed in the freshwater crayfish Cherax destructor Clark, an ecologically and commercially important species that is widespread throughout the freshwater systems of central Australia. At the intra-population level, allozymes revealed a similar level of variation to that found in other freshwater crayfish; RAPDs showed less diversity than allozymes, which was unexpected. At the inter-population level, both techniques revealed significant population structure, both within and between drainages. RAPD results were consistent with phylogeographic patterns previously identified using mtDNA. Although allozyme data showed little geographic pattern in relation to genetic variation based on multidimensional-scaling (MDS) plots on matrices of genetic distance, results of AMOVA and Mantel tests indicated significant population structuring. Each of the mtDNA lineages proposed in a previous study also showed significant genetic structure at similar levels as revealed by RAPDs but different levels by allozymes. These results reject hypotheses previously put forward on genetic homogenisation within the species due to wide-scale translocation. The implications of the findings for conservation and aquaculture of C. destructor are also discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Endemic asp, Aspius vorax, from the middle section of the Euphrates River flowing through eastern Syria were studied to determine the main characteristics of their population structure, morphological parameters and reproductive biology. Samples ranged between 0+ and 4+ years of age and were dominated by 2+ years old group. Total length (TL) ranged between 19 and 70 cm corresponding with 46 to 2824.5 g weight, respectively. Fish growth has isometric pattern and the overall sex ratio was unbiased. Seasonal changes in the condition factor were related with the water temperature as well as the spawning season. Annual cycle of gonadosomatic index (GSI) readings indicated that spawning season occur around March when fish longer than 36 cm can mate. Average pre-spawning GSI was greater in individuals older than 2 years. Meanwhile, female fecundity was highly related to TL and weight. These findings did not always concur with previous observations from other asp populations, mainly in southern and northern Mesopotamia. Our results highlighted basic biological aspects of the local population and indicated differences between populations which can assist in fisheries management, conservation and commercial culture of the investigated species.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Understanding how habitat fragmentation affects population processes (e.g. dispersal) at different spatial scales is of critical importance to conservation. We assessed the effects of habitat fragmentation on dispersal and regional and fine-scale population structure in a currently widespread and common cooperatively breeding bird species found across south-eastern Australia, the superb fairy-wren Malurus cyaneus. Despite its relative abundance and classification as an urban tolerant species, the superb fairy-wren has declined disproportionately from low tree-cover agricultural landscapes across the Box-Ironbark region of north-central Victoria, Australia. Loss of genetic connectivity and disruption to its complex social system may be associated with the decline of this species from apparently suitable habitat in landscapes with low levels of tree cover. To assess whether reduced structural connectivity has had negative consequences for genetic connectivity in the superb fairy-wren, we used a landscape-scale approach to compare patterns of genetic diversity and gene flow at large (landscape/regional) and fine (site-level) spatial scales. In addition, using genetic distances, for each sex, we tested landscape models of decreased dispersal through treeless areas (isolation-by-resistance) while controlling for the effect of isolation-by-distance. Landscape models indicated that larger-scale gene flow across the Box-Ironbark region was constrained by distance rather than by lack of structural connectivity. Nonetheless, a pattern of isolation-by-resistance for males (the less-dispersive sex) and lower genetic diversity and higher genetic similarity within sites in low-cover fragmented landscapes indicated disruption to fine-scale gene flow mechanisms and/or mating systems. Although loss of structural connectivity did not appear to impede gene flow at larger spatial scales, fragmentation appeared to affect fine-scale population processes (e.g. local gene flow mechanisms and/or mating systems) adversely and may contribute to the decline of superb fairy-wrens in fragmented landscapes in the Box-Ironbark region. © 2012 British Ecological Society.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Biogeographic barriers potentially restrict gene flow but variation in dispersal or vagility can influence the effectiveness of these barriers among different species and produce characteristic patterns of population genetic structure. The objective of this study was to investigate interspecific and intraspecific genetic structure in two closely related species that differ in several life-history characteristics. The grey teal Anas gracilis is geographically widespread throughout Australia with a distribution that crosses several recognized biogeographic barriers. This species has high vagility as its extensive movements track broad-scale patterns in rainfall. In contrast, the closely related chestnut teal A. castanea is endemic to the mesic southeastern and southwestern regions of Australia and is more sedentary. We hypothesized that these differences in life-history characteristics would result in more pronounced population structuring in the chestnut teal. We sequenced five nuclear loci (nuDNA) for 49 grey teal and 23 chestnut teal and compared results to published mitochondrial DNA (mtDNA) sequences. We used analysis of molecular variance to examine population structure, and applied coalescent based approaches to estimate demographic parameters. As predicted, chestnut teal were more strongly structured at both mtDNA and nuDNA (ΦST= 0.163 and 0.054, respectively) than were grey teal (ΦST < 0.0001 for both sets of loci). Surprisingly, a greater proportion of the total genetic variation was partitioned among populations within species (ΦSC= 0.014 and 0.047 for nuDNA and mtDNA, respectively) than between the two species (ΦCT < 0.0001 for both loci). The ‘Isolation with Migration’ coalescent model suggested a late Pleistocene divergence between the taxa, but remarkably, a deeper divergence between the southeastern and southwestern populations of chestnut teal. We conclude that dispersal potential played a prominent role in the structuring of populations within these species and that divergent selection associated with ecology and life history traits likely contributed to rapid and recent speciation in this pair.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Major disjunctions among marine communities in southeastern Australia have been well documented, although explanations for biogeographic structuring remain uncertain. Converging ocean currents, environmental gradients, and habitat discontinuities have been hypothesized as likely drivers of structuring in many species, although the extent to which species are affected appears largely dependent on specific life histories and ecologies. Understanding these relationships is critical to the management of native and invasive species, and the preservation of evolutionary processes that shape biodiversity in this region. In this study we test the direct influence of ocean currents on the genetic structure of a passive disperser across a major biogeographic barrier. Donax deltoides (Veneroida: Donacidae) is an intertidal, soft-sediment mollusc and an ideal surrogate for testing this relationship, given its lack of habitat constraints in this region, and its immense dispersal potential driven by year-long spawning and long-lived planktonic larvae. We assessed allele frequencies at 10 polymorphic microsatellite loci across 11 sample locations spanning the barrier region and identified genetic structure consistent with the major ocean currents of southeastern Australia. Analysis of mitochondrial DNA sequence data indicated no evidence of genetic structuring, but signatures of a species range expansion corresponding with historical inundations of the Bassian Isthmus. Our results indicate that ocean currents are likely to be the most influential factor affecting the genetic structure of D. deltoides and a likely physical barrier for passive dispersing marine fauna generally in southeastern Australia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Loss and fragmentation of habitat can disrupt genetic exchange between populations, which is reflected in changes to the genetic structure of populations. The Grey-crowned Babbler (Pomatostomus temporalis) is a cooperatively breeding woodland bird, once common and widespread in south-eastern Australia. The species has suffered population declines of >90% across its southern distribution as a result of loss and fragmentation of habitat. We investigated patterns of genetic diversity and population structure of Grey-crowned Babblers in fragmented habitats at the southernmost extent of its range. We sampled blood from 135 individual Babblers from 39 groups stratified into six subpopulations in three regions. Genotypic data were used to estimate genetic diversity, population substructure, local relatedness and dispersal patterns. Individuals showed high heterozygosity within regions, and varying numbers of private alleles among regions suggested differences in levels of connectivity between regions. Four genetic clusters revealed population substructure consistent with treeless landscapes acting as strong barriers to gene flow. In contrast to previous studies,we identified a male-biased dispersal pattern and significant isolation-by-distance patterns for females at fine spatial scales. We recommend that conservation plans for this species incorporate opportunities to increase and enhance corridor areas to facilitate genetic exchange among subpopulations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Habitat fragmentation is a major threat to biodiversity, as it can alter ecological processes at various spatial and trophic scales. At the species level, fragmentation leading to the isolation of populations can trigger reductions in genetic diversity, potentially having detrimental effects on population fitness, adaptability and ultimately population persistence. Leptomyrmex pallens is a widespread rainforest ant endemic to New Caledonia but now confined to habitat patches that have been fragmented by anthropogenic fire regimes over the last 200 years. We investigated the social structure of L. pallens in the Aoupinié region (c.a. 4900 ha), and assessed the impacts of habitat fragmentation on its population genetic structure. Allele frequencies at 13 polymorphic microsatellite loci were compared among 411 worker ants from 21 nests distributed across the region. High within-nest relatedness (r = 0.70 ± 0.02), and a single queen found in 38 % of the nests by pedigree analysis indicate that the species is monogynous to weakly polygynous. Estimates of gene flow and genetic structure across the region were subsequently determined using a combined dataset of single workers per nest and of unrelated foraging workers. These estimates coupled with a comprehensive landscape genetic analysis revealed no evidence of significant population structure or habitat effects, suggesting that the Aoupinié region harbours a single panmictic population. In contrast, analyses of mitochondrial DNA sequence data revealed a high degree of genetic structuring, indicating limited maternal gene flow and suggesting that gene flow among nests is driven primarily by winged males. Overall these findings suggest that fire-induced habitat fragmentation has had little impact on the population dynamics of L. pallens. Additional studies of less mobile species should therefore be conducted to gain further insights into fire related disturbances on the unique biodiversity and function of New Caledonian ecosystems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Mountain landscapes are topographically complex, creating discontinuous 'islands' of alpine and sub-alpine habitat with a dynamic history. Changing climatic conditions drive their expansion and contraction, leaving signatures on the genetic structure of their flora and fauna. Australia's high country covers a small, highly fragmented area. Although the area is thought to have experienced periods of relative continuity during Pleistocene glacial periods, small-scale studies suggest deep lineage divergence across low-elevation gaps. Using both DNA sequence data and microsatellite markers, we tested the hypothesis that genetic partitioning reflects observable geographic structuring across Australia's mainland high country, in the widespread alpine grasshopper Kosciuscola tristis (Sjösted). RESULTS: We found broadly congruent patterns of regional structure between the DNA sequence and microsatellite datasets, corresponding to strong divergence among isolated mountain regions. Small and isolated mountains in the south of the range were particularly distinct, with well-supported divergence corresponding to climate cycles during the late Pliocene and Pleistocene. We found mixed support, however, for divergence among other mountain regions. Interestingly, within areas of largely contiguous alpine and sub-alpine habitat around Mt Kosciuszko, microsatellite data suggested significant population structure, accompanied by a strong signature of isolation-by-distance. CONCLUSIONS: Consistent patterns of strong lineage divergence among different molecular datasets indicate genetic breaks between populations inhabiting geographically distinct mountain regions. Three primary phylogeographic groups were evident in the highly fragmented Victorian high country, while within-region structure detected with microsatellites may reflect more recent population isolation. Despite the small area of Australia's alpine and sub-alpine habitats, their low topographic relief and lack of extensive glaciation, divergence among populations was on the same scale as that detected in much more extensive Northern hemisphere mountain systems. The processes driving divergence in the Australian mountains might therefore differ from their Northern hemisphere counterparts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The red crab, Gecarcoidea natalis, is endemic to Christmas Island in the Indian Ocean and largely responsible for shaping the unique ecosystem found throughout the island's rainforests. However, the introduction and establishment of supercolonies of the highly invasive yellow crazy ant, Anoplolepis gracilipes, has decimated red crab numbers over the last several decades. This poses a significant risk to the future conservation of G. natalis and consequently threatens the integrity of the unique island ecosystem. Here we undertook a population genetic analysis of G. natalis using a combination of 11 microsatellite markers and sequencing of the mitochondrial cytochrome oxidase subunit I gene from samples collected on Christmas Island as well as a single location from North Keeling Island (located approximately 900 km west of Christmas Island). The genetic results indicate that G. natalis is a single panmictic population on Christmas Island, with no spatial genetic structure or restricted gene flow apparent between sampled locations. Further, G. natalis from North Keeling Island are not genetically distinct and are recent immigrants from Christmas Island. The effective population size of G. natalis has likely remained large and stable on Christmas Island throughout its evolutionary history with relatively moderate to high levels of genetic diversity in microsatellite loci and mitochondrial haplotypes assessed in this study. For management purposes G. natalis can be considered a single panmictic population, which should simplify conservation efforts for the genetic management of this iconic island species. © 2014 Springer Science+Business Media Dordrecht.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Glenelg spiny crayfish, Euastacus bispinosus, is an iconic freshwater invertebrate of south eastern Australia and listed as 'endangered' under the Environment Protection and Biodiversity Conservation Act 1999, and 'vulnerable' under the International Union for Conservation of Nature's Red List. The species has suffered major population declines as a result of over-fishing, low environmental flows, the introduction of invasive fish species and habitat degradation. In order to develop an effective conservation strategy, patterns of gene flow, genetic structure and genetic diversity across the species distribution need to be clearly understood. In this study we develop a suite of polymorphic microsatellite markers by next generation sequencing. A total of 15 polymorphic loci were identified and 10 characterized using 22 individuals from the lower Glenelg River. We observed low to moderate genetic variation across most loci (mean number of alleles per locus = 2.80; mean expected heterozygosity = 0.36) with no evidence of individual loci deviating significantly from Hardy-Weinberg equilibrium. Marker independence was confirmed with tests for linkage disequilibrium, and analyses indicated no evidence of null alleles across loci. Individuals from two additional sites (Crawford River, Victoria; Ewens Ponds Conservation Park, South Australia) were genotyped at all 10 loci and a preliminary investigation of genetic diversity and population structure was undertaken. Analyses indicate high levels of genetic differentiation among sample locations (F ST = 0.49), while the Ewens Ponds population is genetically homogeneous, indicating a likely small founder group and ongoing inbreeding. Management actions will be needed to restore genetic diversity in this and possibly other at risk populations. These markers will provide a valuable resource for future population genetic assessments so that an effective framework can be developed for implementing conservation strategies for E. bispinosus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genetic variation at ten microsatellite lociand one anonymous-nuclear locus was assayed for three geographic samples of the criticallyendangered North American cyprinid Notropis mekistocholas (Cape Fear shiner). Despite low abundance of this species, there was little suggestion of small population effects; allele diversity and heterozygosity were relatively high, FIS values within samples were non-significant, and genotypes were distributed in frequencies according to Hardy-Weinberg expectations. Genetic divergence among samples was minimal despite the presence of dams, constructed in the early1900s, that separate the sample sites. This suggests that recent gene flow has been sufficient to inhibit genetic divergence or that gene flow has been reduced but there has been insufficient time for genetic divergence to develop. Tests of heterozygosity excess were non-significant, suggesting that N.mekistocholas in the localities sampled have not undergone recent reductions ineffective population size. Future studies employing larger sample sizes to provide more robust tests of population structure and temporally separated samples to estimate contemporaneous Ne are warranted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three classes of molecular markers are commonly employed during population genetic studies of marine taxa: allozymes, mitochondrial DNA (mtDNA), and microsatellite DNA. These markers differ in their levels of polymorphism, and the ease and cost of their application. Nemadactylus macropterus is a commercially important marine fish from New Zealand and southern Australia that has been the subject of genetic (allozyme, mtDNA) and non-genetic (otolith microchemistry, larval advection) studies of stock structure. We collected microsatellite DNA data from this species to compare the utility of these molecular markers with those genetic methods previously applied to N. macropterus. Microsatellites did not indicate significant divergence among Australian samples, or between Australian and New Zealand samples. The latter is incongruent with the allozyme and mtDNA studies, and it is suggested that allelic homoplasy has hindered the resolution of population structure when using microsatellites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The population genetic structure of snapper, Pagrus auratus (Bloch and Schneider), in Victoria was investigated using six polymorphic allozyme loci. Fish were sampled from four sites in Victoria and single locations in South Australia, Western Australia and New Zealand. Although there were distinct genetic differences between the snapper populations from each of the Australian states and New Zealand, only minor and largely insignificant differences were detected among Victorian populations. The results are consistent with previous genetic and tagging studies that indicate no mixing between snapper stocks in Victoria and Spencer Gulf in South Australia. This justifies separate management of the snapper fisheries in these regions. The low levels of polymorphism and heterozygosity in Victorian snapper suggest an isolation by distance model of population structure rather than one of discrete subpopulations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents findings from an evaluation of a range of factors considered to influence dwelling sale prices in Sydney. The aim is to determine whether factors such as dwelling type, location, population structure and sales transaction type. significantly influence dwelling sale prices in Sydney. A review of the local market literature reveals that this belief has not been validated in the recent times. Hence, some of these factors may be inadequately exploited by dwelling investors. A sample of 33 dwelling Units from eight randomly selected suburbs located within 20kms of the Sydney Central Business District (CBD) was studied, and data analysed using simple Pearson's correlation. Significant associations were only found between Australian-born population proportion and dwelling type, and the sale prices. Hence, within the scope and methodology limitations. This paper concludes that, while dwelling type and Australian-born population proportion of a suburb are significantly associated with dwelling sale prices, location. population density and sales transaction type, are virtually not, as earlier held. The implication is for the amount of effort expended on location models, sales transaction marketing and population size studies. to be reviewed, at least, in relation to dwellings. This message resonates to cities and locations of similar characteristics as Sydney.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Powerful Owl (Ninox strenua) is endemic to Australia, being resident in the three eastern mainland states and the Australian Capital Territory. It is classified nationally as of conservation significance and vulnerable in the state of Victoria. The elusive nature of this owl, along with its dispersed distribution, low population density and difficulty in identifying individual birds, limit the collection of ecological data. Molecular methods can be used to obtain crucial ecological information, essential for Powerful Owl conservation.

Non-invasive sampling is a relatively new method used for obtaining genetic material from free-ranging animals. This type of sampling however, is generally overlooked as a potential DNA source. Shed hair and feathers, faeces, urine, skins and eggshells are all potential sources of DNA. Non-invasive sampling regimes may be the only alternative for the genetic analysis of endangered and/or elusive species that are difficult to sample otherwise.

Powerful Owls moult annually. Shed feathers therefore, can be collected from under roost trees and used for genetic analysis. Feathers collected provide DNA that is unique to the individual and can provide additional ecological knowledge of the species.

In this study we collected shed Powerful Owl feathers during 2003 and 2004. In order to obtain samples from across the owl's large distribution, public awareness about the project via the way of flyers, mail-outs, media sources (radio, newspapers and magazines), email lists and public seminars was initiated. Overall, the collection strategy was very successful with over 500 Powerful Owl feather samples being collected.

Genetic information obtained from the analysis of DNA from feathers can enable a more rigorous assessment of population viability of the Powerful Owl. Specifically designed molecular markers will facilitate unequivocal identification of individual birds ("DNA fingerprinting"). Through the application of molecular techniques we can collect ecological information about the Powerful Owl such as, genetic divergence, population structure, dispersal patterns, migration and inbreeding. These questions can not be addressed via traditional data collection and will contribute significantly to the successful conservation of the Powerful Owl and potentially other raptor species.