106 resultados para gene-expression analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Skeletal muscle is a complex and heterogenous tissue capable of remarkable adaptation in response to exercise training. The role of gene transcription, as an initial target to control protein synthesis, is poorly understood.
2. Mature myofibres contain several hundred nuclei, all of which maintain transcriptional competency, although the localized responsiveness of nuclei is not well known. Myofibres are capable of hypertrophy. These processes require the activation and myogenic differentiation of mononuclear satellite cells that fuse with the enlarging or repairing myofibre.
3. A single bout of exercise in human subjects is capable of activating the expression of many diverse groups of genes.
4. The impact of repeated exercise bouts, typical of exercise training, on gene expression has yet to receive systematic investigation.
5. The molecular programme elicited by resistance exercise and endurance exercise differs markedly. Muscular hypertrophy following resistance exercise is dependent on the activation of satellite cells and their subsequent myogenic maturation. Endurance exercise requires the simultaneous activation of mitochondrial and nuclear genes to enable mitochondrial biogenesis.
6. Future analysis of the regulation of genes by exercise may combine high-throughput technologies, such as gene-chips, enabling the rapid detection and analysis of changes in the expression of many thousands of genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To determine the effect of a high-fat diet on the expression of genes important for fat oxidation, the protein abundance of the transcription factors peroxisome proliferator-activated receptor (PPAR) isoforms α and γ, and selected enzyme activities in type I and II skeletal muscle. Research Methods and Procedures: Sprague-Dawley rats consumed either a high-fat (HF: 78% energy, n = 8) or high-carbohydrate (64% energy, n = 8) diet for 8 weeks while remaining sedentary. Results: The expression of genes important for fat oxidation tended to increase in both type I (soleus) and type II (extensor digitorum longus) fiber types after an HF dietary intervention. However, the expression of muscle type carnitine palmitoyltransferase I was not increased in extensor digitorum longus. Analysis of the gene expression of both peroxisome proliferator-activated receptor-γ coactivator and forkhead transcription factor O1 demonstrated no alteration in response to the HF diet. Similarly, PPARα and PPARγ protein levels were also not altered by the HF diet. Discussion: An HF diet increased the expression of an array of genes involved in lipid metabolism, with only subtle differences evident in the response within differing skeletal muscle fiber types. Despite changes in gene expression, there were no effects of diet on peroxisome proliferator-activated receptor-gamma coactivator and forkhead transcription factor O1 mRNA and the protein abundance of PPARα and PPARγ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dietary fatty acids regulate the abundance and activity of various proteins involved in the regulation of fat oxidation by functioning as regulators of gene transcription. To determine whether the transcription of key lipid metabolic proteins necessary for fat metabolism within human skeletal muscle are regulated by acute elevations in circulating free fatty acid (FFA) concentrations, 7 healthy men underwent 3 randomized resting infusions of Intralipid (20%) with heparin sodium, saline and heparin sodium, or saline only for 5 hours. These infusions significantly elevated plasma FFA concentrations by 15-fold (to 1.67 ± 0.13 mmol/L) in the Intralipid infusion trial, with modest elevations observed in the saline and heparin sodium and saline alone infusion groups (0.67 ± 0.09 and 0.49 ± 0.087 mmol/L, P < .01 both vs Intralipid infusion). Analysis of messenger RNA (mRNA) concentration demonstrated that pyruvate dehydrogenase kinase isoform 4 (PDK4) mRNA, a key negative regulator of glucose oxidation, was increased in all trials with a 24-fold response after Intralipid infusion, 15-fold after saline and heparin infusion, and 9-fold after saline alone. The PDK4 increases were not significantly different between the 3 trials. The mRNA concentration of the major uncoupling protein within skeletal muscle, uncoupling protein 3, was not elevated in parallel to the increased plasma FFA as similar (not, vert, similar2-fold) increases were evident in all trials. Additional genes involved in lipid transport (fatty acid translocase/CD36), oxidation (carnitine palmitoyltransferase I), and metabolism (1-acylglycerol-3-phosphate O-acyltransferase 1, hormone-sensitive lipase, and peroxisomal proliferator-activated receptor-γ coactivator-1α) were not altered by increased circulating FFA concentrations. The present data demonstrate that of the genes analyzed that encode proteins that are key regulators of lipid homeostasis within skeletal muscle, only the PDK4 gene is uniquely sensitive to increasing FFA concentrations after increased plasma FFA achieved by intravenous lipid infusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: This study aimed to investigate the regulation of adiponectin receptors 1 (AdipoR1) and 2 (AdipoR2) gene expression in primary skeletal muscle myotubes, derived from human donors, after exposure to globular adiponectin (gAd) and leptin. Research Methods and Procedures: Four distinct primary cell culture groups were established [ Lean, Obese, Diabetic, Weight Loss (Wt Loss); n = 7 in each] from rectus abdominus muscle biopsies obtained from surgical patients. Differentiated myotube cultures were exposed to gAd (0.1 mug/mL) or leptin (2.5 mug/mL) for 6 hours. AdipoR1 and AdipoR2 gene expression was measured by real-time polymerase chain reaction analysis. Results: AdipoR1 mRNA expression in skeletal muscle myotubes derived from Lean subjects (p < 0.05) was stimulated 1.8-fold and 2.5-fold with gAd and leptin, respectively. No increase in AdipoR1 gene expression was measured in myotubes derived from Obese, Diabetic, or Wt Loss subjects. AdipoR2 mRNA expression was unaltered after gAd and leptin exposure in all myotube groups. Discussion: Adiponectin and leptin are rapid and potent stimulators of AdipoR1 in myotubes derived from lean healthy individuals. This effect was abolished in myotubes derived from obese, obese diabetic subjects, and obese-prone individuals who had lost significant weight after bariatric surgery. The incapacity of skeletal muscle of obese and diabetic individuals to respond to exogenous adiponectin and leptin may be further suppressed as a result of impaired regulation of the AdipoR1 gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endurance exercise transiently increases the mRNA of key regulatory proteins involved in skeletal muscle metabolism. During prolonged exercise and subsequent recovery, circulating plasma fatty acid (FA) concentrations are elevated. The present study therefore aimed to determine the sensitivity of key metabolic genes to FA exposure, assessed in vitro using L6 myocytes and secondly, to measure the expression of these same set of genes in vivo, following a single exercise bout when the post-exercise rise in plasma FA is abolished by acipimox. Initial studies using L6 myotubes demonstrated dose responsive sensitivity for both PDK4 and PGC-1α mRNA to acute FA exposure in vitro. Nine active males performed two trials consisting of 2 h exercise, followed by 2 h of recovery. In one trial, plasma FA availability was reduced by the administration of acipimox (LFA), a pharmacological inhibitor of adipose tissue lipolysis, and in the second trial a placebo was provided (CON). During the exercise bout and during recovery, the rise in plasma FA and glycerol was abolished by acipimox treatment. Following exercise the mRNA abundance of PDK4 and PGC-1α were elevated and unaffected by either acipimox or placebo. Further analysis of skeletal muscle gene expression demonstrated that the CPT I gene was suppressed in both trials, whilst UCP-3 gene was only modestly regulated by exercise alone. Acipimox ingestion did not alter the response for both CPT I and UCP-3. Thus, this study demonstrates that the normal increase in circulating concentrations of FA during the later stages of exercise and subsequent recovery is not required to induce skeletal muscle mRNA expression of several proteins involved in regulating substrate metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Few models are in place for analysis of extreme lactation patterns such as that of the fur seals which are capable of extended down regulation of milk production in the absence of involution. During a 10–12 month lactation period, female fur seals suckle pups on shore for 2–3 days, and then undertake long foraging trips at sea for up to 28 days, resulting in the longest intersuckling bouts recorded. During this time the mammary gland down regulates milk production. We have induced Cape fur seal (Arctocephalus pusillus pusillus) mammary cells in vitro to form mammospheres up to 900 μm in diameter, larger than any of their mammalian counterparts. Mammosphere lumens were shown to form via apoptosis and cells comprising the cellular boundary stained vimentin positive. The Cape fur seal GAPDH gene was cloned and used in RT-PCR as a normalization tool to examine comparative expression of milk protein genes (αS2-casein, β-lactoglobulin and lysozyme C) which were prolactin responsive. Cape fur seal mammary cells were found to be unique; they did not require Matrigel for rapid mammosphere formation and instead deposited their own matrix within 2 days of culture. When grown on Matrigel, cells exhibited branching/stellate morphogenesis highlighting the species-specific nature of cell–matrix interactions during morphological differentiation. Matrix produced in vitro by cells did not support formation of human breast cancer cell line, PMC42 mammospheres. This novel model system will help define the molecular pathways controlling the regulation of milk protein expression and species specific requirements of the extracellular matrix in the cape fur seal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Development of polarized immune responses controls resistance and susceptibility to many microorganisms. However, studies of several infectious, allergic, and autoimmune diseases have shown that chronic type-1 and type-2 cytokine responses can also cause significant morbidity and mortality if left unchecked. We used mouse cDNA microarrays to molecularly phenotype the gene expression patterns that characterize two disparate but equally lethal forms of liver pathology that develop in Schistosoma mansoni infected mice polarized for type-1 and type-2 cytokine responses. Hierarchical clustering analysis identified at least three groups of genes associated with a polarized type-2 response and two linked with an extreme type-1 cytokine phenotype. Predictions about liver fibrosis,  apoptosis, and granulocyte recruitment and activation generated by the microarray studies were confirmed later by traditional biological assays. The data show that cDNA microarrays are useful not only for determining  coordinated gene expression profiles but are also highly effective for molecularly “fingerprinting” diseased tissues. Moreover, they illustrate the potential of genome-wide approaches for generating comprehensive views on the molecular and biochemical mechanisms regulating infectious  disease pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phytohormone, abscisic acid (ABA) has been shown to influence the outcome of the interactions between various hosts with biotrophic and hemibiotrophic pathogens. Susceptibility to avirulent isolates can be induced by addition of low physiological concentrations of ABA to plants. In contrast, addition of ABA biosynthesis inhibitors induced resistance following challenge of plants by virulent isolates. ABA deficient mutants of Arabidopsis, such as aba1-1, were resistant to virulent isolates of Peronospora parasitica. In interactions of Arabidopsis with avirulent isolates of Pseudomonas syringae pv. tomato, susceptibility was induced following addition of ABA or imposition of drought stress. These results indicate a pivotal, albiet undefined, role for ABA in determining either susceptibility or resistance to pathogen attack. We have found that the production of the cell wall strengthening compound, lignin, is increased during resistant interactions of aba1-1 but suppressed in ABA induced susceptible interactions. Using RT-PCR and microarray analysis we have found down-regulation by ABA of key genes of the phenylpropanoid pathway especially of those genes involved directly in lignin biosynthesis. ABA also down-regulates a number of genes in other functional classes including those involved in defence and cell signalling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phytohormone, abscisic acid (ABA) has been shown to influence the outcome of the interactions between various hosts with biotrophic and hemibiotrophic pathogens. Susceptibility to avirulent isolates can be induced in plants by addition of low physiological concentrations of ABA. In contrast, addition of ABA biosynthesis inhibitors induced resistance following challenge of plants by virulent isolates. ABA deficient mutants of Arabidopsis, such as aba1-1, were resistant to virulent isolates of Peronospora parasitica. In interactions of Arabidopsis with avirulent isolates of Pseudomonas syringae pv. tomato, susceptibility was induced following addition of ABA or imposition of drought stress. These results indicate a pivotal, albiet undefined, role for ABA in determining either susceptibility or resistance to pathogen attack. We have found that the production of the cell wall strengthening compound, lignin, is increased during resistant interactions of aba1-1 but suppressed in ABA-induced susceptible interactions. Using RT-PCR and microarray analysis we have found down-regulation by ABA of key genes of the phenylpropanoid pathway especially of those genes involved directly in lignin biosynthesis. ABA also down-regulates a number of genes in other functional classes including those involved in defence and cell signalling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microarray data provides quantitative information about the transcription profile of cells. To analyse microarray datasets, methodology of machine learning has increasingly attracted bioinformatics researchers. Some approaches of machine learning are widely used to classify and mine biological datasets. However, many gene expression datasets are extremely high dimensionality, traditional machine learning methods cannot be applied effectively and efficiently. This paper proposes a robust algorithm to find out rule groups to classify gene expression datasets. Unlike the most classification algorithms, which select dimensions (genes) heuristically to form rules groups to identify classes such as cancerous and normal tissues, our algorithm guarantees finding out best-k dimensions (genes) to form rule groups for the classification of expression datasets. Our experiments show that the rule groups obtained by our algorithm have higher accuracy than that of other classification approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective:  Alterations in gene expression in bipolar disorder have been found in numerous studies. It is unclear whether such alterations are related to specific mood states. As a biphasic disorder, mood state-related alterations in gene expression have the potential to point to markers of disease activity, and trait-related alterations might indicate vulnerability pathways. This review therefore evaluated the evidence for whether gene expression in bipolar disorder is state or trait related.

Methods:  A systematic review, using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guideline for reporting systematic reviews, based on comprehensive database searches for studies on gene expression in patients with bipolar disorder in specific mood states, was conducted. We searched Medline, Embase, PsycINFO, and The Cochrane Library, supplemented by manually searching reference lists from retrieved publications.

Results:  A total of 17 studies were included, comprising 565 patients and 418 control individuals. Six studies evaluated intraindividual alterations in gene expression across mood states. Two of five studies found evidence of intraindividual alterations in gene expression between a depressed state and a euthymic state. No studies evaluated intraindividual differences in gene expression between a manic state and a euthymic state, while only one case study evaluated differences between a manic state and a depressed state, finding altered expression in seven genes. No study investigated intraindividual variations in gene expression between a euthymic state and multiple states of various polarities (depressive, manic, hypomanic). Intraindividual alterations in expression of the same genes were not investigated across studies. Only one gene (the brain-derived neurotrophic factor gene; BDNF) was investigated across multiple studies, showing no alteration between bipolar disorder patients and control individuals.

Conclusions:  There is evidence of some genes exhibiting state-related alterations in expression in bipolar disorder; however, this finding is limited by the lack of replication across studies. Further prospective studies are warranted, measuring gene expression in various affective phases, allowing for assessment of intraindividual differences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the development of a microfluidic methodology, using RNA extraction and reverse transcription PCR, for investigating expression levels of cytochrome P450 genes. Cytochrome P450 enzymes are involved in the metabolism of xenobiotics, including many commonly prescribed drugs, therefore information on their expression is useful in both pharmaceutical and clinical settings. RNA extraction, from rat liver tissue or primary rat hepatocytes, was performed using a silica-based solid-phase extraction technique. Following elution of the purified RNA, amplification of target sequences for the housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the cytochrome P450 gene CYP1A2, was carried out using a one-step reverse transcription PCR. Once the microfluidic methodology had been optimized, analysis of control and 3-methylcholanthrene-induced primary rat hepatocytes were used to evaluate the system. As expected, GAPDH was consistently expressed, whereas CYP1A2 levels were found to be raised in the drug-treated samples. The proposed system offers an initial platform for development of both rapid throughput analyzers for pharmaceutical drug screening and point-of-care diagnostic tests to aid provision of drug regimens, which can be tailor-made to the individual patient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposure of plants to UV-C irradiation induces gene expression and cellular responses that are commonly associated with wounding and pathogen defence, and in some cases can lead to increased resistance against pathogen infection. We examined, at a physiological, molecular and biochemical level, the effects of and responses to, sub-lethal UV-C exposure on Arabidopsis plants when irradiated with increasing dosages of UV-C radiation. Following UV-C exposure plants had reduced leaf areas over time, with the severity of reduction increasing with dosage. Severe morphological changes that included leaf glazing, bronzing and curling were found to occur in plants treated with the 1000 J·m(-2) dosage. Extensive damage to the mesophyll was observed, and cell death occurred in both a dosage- and time-dependent manner. Analysis of H2 O2 activity and the pathogen defence marker genes PR1 and PDF1.2 demonstrated induction of these defence-related responses at each UV-C dosage tested. Interestingly, in response to UV-C irradiation the production of callose (β-1,3-glucan) was identified at all dosages examined. Together, these results show plant responses to UV-C irradiation at much lower doses than have previously been reported, and that there is potential for the use of UV-C as an inducer of plant defence.