24 resultados para dehydration


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Feeding behaviour is an expression of an animal’s underlying nutritional strategy. The study of feeding decisions can hence delineate nutritional strategies. Studies of Drosophila melanogaster feeding behaviour have yielded conflicting accounts, and little is known about how nutrients affect feeding patterns in this important model species. Here, we conducted two experiments to characterize nutrient prioritization and regulation. In a choice experiment, we allowed female flies to self-regulate their intake of yeast, sucrose and water by supplying individual flies with three microcapillary tubes: one containing only yeast of varying concentrations, another with just sucrose of varying concentrations, and the last with just water. Flies tightly regulated yeast and sucrose to a constant ratio at the expense of excess water intake, indicating that flies prioritize macronutrient regulation over excess water consumption. To determine the relative importance of yeast and sucrose, in a no-choice experiment, we provided flies with two microcapillary tubes: the first with one of the 28 diets varying in yeast and sucrose content and the other with only water. Flies increased total water intake in relation to yeast consumption but not sucrose consumption. Additionally, flies increased diet intake as diet concentration decreased and as the ratio of sugar to yeast equalized. Using a geometric scaling approach, we found that the patterns of diet intake can be explained by flies prioritizing protein and carbohydrates equally and by the lack of substitutability between the nutrients. We conclude by illustrating how our results harmonize conflicting results in the literature once viewed in a two-dimensional diet landscape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The resurrection grass Sporobolus stapfianus Gandoger can rapidly recover from extended periods of time in the desiccated state (water potential equilibrated to 2% relative humidity) (Gaff and Ellis, Bothalia 11:305–308 1974; Gaff and Loveys, Transactions of the Malaysian Society of Plant Physiology 3:286–287 1993). Physiological studies have been conducted in S. stapfianus to investigate the responses utilised by these desiccation-tolerant plants to cope with severe water-deficit. In a number of instances, more recent gene expression analyses in S. stapfianus have shed light on the molecular and cellular mechanisms mediating these responses. S. stapfianus is a versatile research tool for investigating desiccation-tolerance in vegetative grass tissue, with several useful characteristics for differentiating desiccation-tolerance adaptive genes from the many dehydration-responsive genes present in plants. A number of genes orthologous to those isolated from dehydrating S. stapfianus have been successfully used to enhance drought and salt tolerance in model plants as well as important crop species. In addition to the ability to desiccate and rehydrate successfully, the survival of resurrection plants in regions experiencing short sporadic rainfall events may depend substantially on the ability to tightly down-regulate cell division and cell wall loosening activities with decreasing water availability and then grow rapidly after rainfall while water is plentiful. Hence, an analysis of gene transcripts present in the desiccated tissue of resurrection plants may reveal important growth-related genes. Recent findings support the proposition that, as well as being a versatile model for devising strategies for protecting plants from water-loss, resurrection plants may be a very useful tool for pinpointing genes to target for enhancing growth rate and biomass production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sporobolus stapfianus Gandoger, one of ~40 known ‘anabiotic’grass species (i.e. ‘able to regain vital activity from a state of latent life’), is the most versatile tool for research into desiccation tolerance in vegetative grass tissue. Current knowledge on this species is presented, including the features that suit it for investigations into the plant’s ability to survive dehydration of its leaf protoplasm. The main contributors to desiccation tolerance in S. stapfianus leaves appear to be: accumulation during dehydration of protectants of membranes and proteins; mechanisms limiting oxidative damage; a retention of protein synthetic activity in late stages of drying that is linked with changes in gene expression and in the proteomic array; and an ability to retain net synthesis of ATP during drying. S. stapfianus exemplifies an advanced stage of an evolutionary trend in desiccation tolerant plants towards increased importance of the dehydration phase (for induction of tolerance, for synthesis of protectants and for proteomic changes).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because energy reserves limit flight range, wind assistance may be of crucial importance for migratory birds. We tracked eight Bewick's swans Cygnus columbianus bewickii, using 95-g satellite transmitters with altimeters and activity sensors, during their spring migration from Denmark to northern Russia in 1996. During the 82 occasions where a swan's location was recorded in flight, average flight altitude was 165 m a.s.1. with a maximum of 759 m a.s.1., despite winds often being more favourable at higher altitudes. We also counted Bewick's swans departing from the Gulf of Finland and subsequently passing an observatory in the next major stop-over area 800 km further north in the White Sea, northern Russia, during the springs of 1994, 1995 and 1996. A comparison of these counts with wind data provided evidence for Bewick's swans using favourable changes in wind conditions to embark on migration. Changes in the numbers of birds arriving in the White Sea correlated best with favourable changes in winds in the Gulf of Finland 1 day earlier. Again, migratory volume showed a correlation with winds at low altitudes only, despite wind conditions for the swans being more favourable at high altitudes. We conclude that the relatively large Bewick's swan tends to gear its migration to wind conditions at low altitude only. We argue that Bewick's swans do not climb to high altitudes because of mechanical and physiological limitations with respect to the generation of power for flight and to avoid rapid dehydration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the energy and protein balance of a Thrush Nightingale Luscinia luscinia, a small long-distance migrant, during repeated 12-hr long flights in a wind tunnel and during subsequent two-day fueling periods. From the energy budgets we estimated the power requirements for migratory flight in this 26 g bird at 1.91 Watts. This is low compared to flight cost estimates in birds of similar mass and with similar wing shape. This suggests that power requirements for migratory flight are lower than the power requirements for nonmigratory flight. From excreta production during flight, and nitrogen and energy balance during subsequent fueling, the dry protein proportion of stores was estimated to be around 10%. A net catabolism of protein during migratory flight along with that of fat may reflect a physiologically inevitable process, a means of providing extra water to counteract dehydration, a production of uric acid for anti-oxidative purposes, and adaptive changes in the size of flight muscles and digestive organs in the exercising animal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the altitudinal profiles of wind, temperature, pressure, and humidity in three flight models, we tried to explain the altitudinal distributions of nocturnal migrants recorded by radar above a desert in southern Israel. In the simplest model, only the tailwind component was used as a predictor of the most preferred flight altitude (T model). The energy model (E model) predicted flight ranges according to mechanical power consumption in flapping flight depending on air density and wind conditions, assuming optimal adjustment of airspeed and compensation of crosswinds, and including the influence of mass loss during flight. The energy-water model (EW model) used the same assumptions and parameters as the E model but also included restrictions caused by dehydration. Because wind was by far the most important factor governing altitudinal distribution of nocturnal migrants, differences in predictions of the three models were small. In a first approach, the EW model performed slightly better than the E model, and both performed slightly better than the T model. Differences were most pronounced in spring, when migrants should fly high according to wind conditions, but when climbing and descending they must cross lower altitudes where conditions are better with respect to dehydration. A simplified energy model (Es model) that omits the effect of air density on flight costs explained the same amount of variance in flight altitude as the more complicated E and EW models. By omitting the effect of air density, the Es model predicted lower flight altitudes and thus compensated for factors that generally bias height distributions downward but are not considered in the models (i.e. climb and descent through lower air layers, cost of ascent, and decrease of oxygen partial pressure with altitude). Our results confirm that wind profiles, and thus energy rather than water limitations, govern the altitudinal distribution of nocturnal migrants, even under the extreme humidity and temperature conditions in the trade wind zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: (i) To evaluate firefighters' pre- and post-shift hydration status across two shifts of wildfire suppression work in hot weather conditions. (ii) To document firefighters' fluid intake during and between two shifts of wildfire suppression work. (iii) To compare firefighters' heart rate, activity, rating of perceived exertion (RPE), and core temperature across the two consecutive shifts of wildfire suppression work. METHOD: Across two consecutive days, 12 salaried firefighters' hydration status was measured immediately pre- and post-shift. Hydration status was also measured 2h post-shift. RPE was also measured immediately post-shift on each day. Work activity, heart rate, and core temperature were logged continuously during each shift. Ten firefighters also manually recorded their food and fluid intake before, during, and after both fireground shifts. RESULTS: Firefighters were not euhydrated at all measurement points on Day one (292±1 mOsm l(-1)) and euhydrated across these same time points on Day two (289±0.5 mOsm l(-1)). Fluid consumption following firefighters' shift on Day one (1792±1134ml) trended (P = 0.08) higher than Day two (1108±1142ml). Daily total fluid intake was not different (P = 0.27), averaging 6443±1941ml across both days. Core temperature and the time spent ≥ 70%HRmax were both elevated on Day one (when firefighters were not euhydrated). Firefighters' work activity profile was not different between both days of work. CONCLUSION: There was no difference in firefighters' pre- to post-shift hydration within each shift, suggesting ad libitum drinking was at least sufficient to maintain pre-shift hydration status, even in hot conditions. Firefighters' relative hypohydration on Day one (despite a slightly lower ambient temperature) may have been associated with elevations in core temperature, more time in the higher heart rate zones, and 'post-shift' RPE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary: The spread of invasive species after their initial introduction is often facilitated by human actions. In some cases, invaders only become established in habitats where dominant native species have been displaced as a result of human actions or where humans inadvertently provide essential resources such as food, water or shelter. We investigated if dams that provide water for livestock have facilitated the cane toad's (Rhinella marina) invasion of a hot semi-arid landscape by providing toads with a resource subsidy and hence refuge from extreme heat and aridity. To determine the relationship between the presence of surface water and habitat occupancy by toads, we surveyed natural and artificial water features for cane toads during the annual dry season. We used radiotracking and acoustic tags to determine whether movement patterns and shelter use of cane toads were focussed around dams. To determine whether dams provide toads with refuge from extreme heat and aridity, we deployed plaster models with internal thermometers to estimate ambient temperatures and toad desiccation rates in shelter sites. To determine whether dams alleviate the stress experienced by toads, we measured plasma corticosterone levels of toads that sheltered in and away from dams. Toads were present in sites with standing water and absent from waterless sites. Most radiotracked toads sheltered within 1 m of water. Toad movements were focussed around water. Toads tracked with passive acoustic telemetry over a 6-month dry season were highly resident at dams. Plaster models placed in toad shelter sites away from the water lost 27% more mass and experienced higher temperatures than models placed near the water's edge. Toads that sheltered in terrestrial shelters exhibited higher plasma corticosterone levels compared to toads that sheltered near dams. Dams provide toads with refuge habitats where they are less at risk from overheating and dehydration. Synthesis and applications. Artificial water points can facilitate biological invasions in arid regions by providing a resource subsidy for water-dependent invasive species. Our study suggests that there is scope to control populations of water-dependent invasive vertebrates in arid regions by restricting their access to artificial water points.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Continued range expansion into physiologically challenging environments requires invasive species to maintain adaptive phenotypic performance. The adrenocortical stress response, governed in part by glucocorticoid hormones, influences physiological and behavioural responses of vertebrates to environmental stressors. However, any adaptive role of this response in invasive populations that are expanding into extreme environments is currently unclear. We experimentally manipulated the adrenocortical stress response of invasive cane toads (Rhinella marina) to investigate its effect on phenotypic performance and fitness at the species' range front in the Tanami Desert, Australia. Here, toads are vulnerable to overheating and dehydration during the annual hot-dry season and display elevated plasma corticosterone levels indicative of severe environmental stress. By comparing unmanipulated control toads with toads whose adrenocortical stress response was manipulated to increase acute physiological stress responsiveness, we found that control toads had significantly reduced daily evaporative water loss and higher survival relative to the experimental animals. The adrenocortical stress response hence appears essential in facilitating complex phenotypic performance and setting fitness trajectories of individuals from invasive species during range expansion.