74 resultados para Mitochondrial DNA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In species of conservation concern it is often difficult to be certain that population diversity and structure have been adequately characterised by genetic sampling. Since practical and financial constraints tend to be associated with increasing sample sizes in many conservation genetic studies, it is important to consider the potential for sampling error and bias due to inadequate samples or spatio-temporal structure within populations. We analysed sequence data from the mitochondrial DNA control region in a large sample (n = 245) of green sea turtles Chelonia mydas collected at the globally important rookery of Ascension Island, South Atlantic. We examined genetic diversity and structure among 10 sampling sites, 4 beach clusters and 4 nesting seasons, and evaluated the genetic composition of Ascension against other Atlantic nesting populations, including the well-studied rookery at Tortuguero (Costa Rica). Finally, we used rarefaction and GENESAMP analyses to assess the ability of different sample sizes to provide acceptable genetic representations of a population, using Ascension and Tortuguero as models. On Ascension, we found 13 haplotypes, of which only 3 had been previously observed in the rookery, and 5 previously undescribed. We detected no differentiation among beach clusters or sampling seasons, and only weak differentiation among the 3 primary nesting sites. The increased sample size for Ascension provided higher resolution and statistical power in describing genetic structure among all other known Atlantic rookeries. Our extrapolations showed that a maximum of 18 and 6 haplotypes are expected to occur in Ascension and Tortuguero, respectively, and that current sample sizes are sufficient to describe most of the variation. We recommend using rarefaction and GENESAMP analyses on a rookery-by-rookery basis to evaluate whether a sample set adequately describes mitochondrial DNA diversity, thus strengthening subsequent phylogeographic and mixed stock analyses, and management recommendations for conservation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondrial calcium regulation plays a number of important roles in neurons. Mitochondrial DNA (mtDNA) is highly polymorphic, and its interindividual variation is associated with various neuropsychiatric diseases and mental functions. An mtDNA polymorphism, 10398A>G, was reported to affect mitochondrial calcium regulation. Volume of hippocampus and amygdala is reportedly associated with various mental disorders and mental functions and is regarded as an endophenotype of mental disorders. The present study investigated the relationship between the mtDNA 10398A>G polymorphism and the volume of hippocampus and amygdala in 118 right-handed healthy subjects. The brain morphometry using magnetic resonance images employed both manual tracing volumetry in the native space and voxel-based morphometry (VBM) in the spatially normalized space. Amygdala volume was found to be significantly larger in healthy subjects with 10398A than in those with 10398G by manual tracing, which was confirmed by the VBM. Brain volumes in the other gray matter regions and all white matter regions showed no significant differences associated with the polymorphism. These provocative findings might provide a clue to the complex relationship between mtDNA, brain structure and mental disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondrial sequence data is often used to reconstruct the demographic history of Pleistocene populations in an effort to understand how species have responded to past climate change events. However, departures from neutral equilibrium conditions can confound evolutionary inference in species with structured populations or those that have experienced periods of population expansion or decline. Selection can affect patterns of mitochondrial DNA variation and variable mutation rates among mitochondrial genes can compromise inferences drawn from single markers. We investigated the contribution of these factors to patterns of mitochondrial variation and estimates of time to most recent common ancestor (TMRCA) for two clades in a co-operatively breeding avian species, the white-browed babbler Pomatostomus superciliosus. Both the protein-coding ND3 gene and hypervariable domain I control region sequences showed departures from neutral expectations within the superciliosus clade, and a two-fold difference in TMRCA estimates. Bayesian phylogenetic analysis provided evidence of departure from a strict clock model of molecular evolution in domain I, leading to an over-estimation of TMRCA for the superciliosus clade at this marker. Our results suggest mitochondrial studies that attempt to reconstruct Pleistocene demographic histories should rigorously evaluate data for departures from neutral equilibrium expectations, including variation in evolutionary rates across multiple markers. Failure to do so can lead to serious errors in the estimation of evolutionary parameters and subsequent demographic inferences concerning the role of climate as a driver of evolutionary change. These effects may be especially pronounced in species with complex social structures occupying heterogeneous environments. We propose that environmentally driven differences in social structure may explain observed differences in evolutionary rate of domain I sequences, resulting from longer than expected retention times for matriarchal lineages in the superciliosus clade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the population structure of a high arctic breeding wader bird species, the White-rumped Sandpiper Calidris fuscicollis. Breeding adults, chicks and juveniles were sampled at seven localities throughout the species' breeding range in arctic Canada in 1999. The mitochondrial control region was analysed by DNA sequencing, feathers were analysed for carbon isotope ratios (C13/C12) by isotope ratio mass spectrometry, and morphological measurements were analysed using principal component analyses, taking the effect of sex into account (identified by molecular genetic methods). In general, our results support the notion that the White-rumped Sandpiper is a monotypic species with no subspecies, and most of the morphological and genetic variation occurs within sites. Nevertheless, some differences between sites were found. Birds from the two northernmost sites (Ellesmere and Devon Islands) had relatively longer bill and wing and shorter tarsus than birds sampled further south, possibly reflecting genetic differences between populations. The carbon isotope ratios were higher at the easternmost site (Baffin Island), revealing differences in the isotope content of the food. The mtDNA sequences showed no significant differentiation between sites and no pattern of isolation-by-distance was found. Based on the mtDNA variation, the species was estimated to have a long-term effective population size of approximately 9,000 females. The species shows no clear evidence of any population expansion or decline. Our results indicate that carbon isotope ratios, and possibly also certain mtDNA haplotypes, may be useful as tools for identifying the breeding origin of White-rumped Sandpipers on migration and wintering sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A suite of polymorphic microsatellite markers and the complete mitochondrial genome sequence was developed by next generation sequencing (NGS) for the critically endangered orange-bellied parrot, Neophema chrysogaster. A total of 14 polymorphic loci were identified and characterized using DNA extractions representing 40 individuals from Melaleuca, Tasmania, sampled in 2002. We observed moderate genetic variation across most loci (mean number of alleles per locus = 2.79; mean expected heterozygosity = 0.53) with no evidence of individual loci deviating significantly from Hardy-Weinberg equilibrium. Marker independence was confirmed with tests for linkage disequilibrium, and analyses indicated no evidence of null alleles across loci. De novo and reference-based genome assemblies performed using MIRA were used to assemble the N. chrysogaster mitochondrial genome sequence with mean coverage of 116-fold (range 89 to 142-fold). The mitochondrial genome consists of 18,034 base pairs, and a typical metazoan mitochondrial gene content consisting of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a single large non-coding region (control region). The arrangement of mitochondrial genes is also typical of Avian taxa. The annotation of the mitochondrial genome and the characterization of 14 microsatellite markers provide a valuable resource for future genetic monitoring of wild and captive N. chrysogaster populations. As found previously, NGS provides a rapid, low cost and reliable method for polymorphic nuclear genetic marker development and determining complete mitochondrial genome sequences when only a fraction of a genome is sequenced.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Non-coding copies of fragments of the mitochondrial genome translocated to the nucleus or pseudogenes are being found with increasing frequency in a diversity of organisms. As part of a study to evaluate the utility of a range of mitochondrial gene regions for population genetic and systematic studies of the Australian freshwater crayfish, Cherax destructor (the yabby), we report the first detection of Cytochrome b (Cyt b) pseudogenes in crustaceans. We amplified and sequenced fragments of the mitochondrial Cyt b gene from 14 individuals of C. destructor using polymerase chain reaction (PCR) with primers designed from conserved regions of Penaeus monodon and Drosophila melanogaster mitochondrial genomes. The phylogenetic tree produced from the amplified fragments using these primers showed a very different topology to the trees obtained from sequences from three other mitochondrial genes, suggesting one or more nuclear pseudogenes have been amplified. Supporting this conclusion, two highly divergent sequences were isolated from each of two single individuals, and a 2 base pair (bp) deletion in one sequence was observed. There was no evidence to support inadvertent amplification of parasite DNA or contamination of samples from other sources. These results add to other recent observations of pseudogenes suggesting the frequent transfer of mitochondrial DNA (mtDNA) genes to the nucleus and reinforces the necessity of great care in interpreting PCR-generated Cyt b sequences used in population or evolutionary studies in freshwater crayfish and crustaceans more generally.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Three classes of molecular markers are commonly employed during population genetic studies of marine taxa: allozymes, mitochondrial DNA (mtDNA), and microsatellite DNA. These markers differ in their levels of polymorphism, and the ease and cost of their application. Nemadactylus macropterus is a commercially important marine fish from New Zealand and southern Australia that has been the subject of genetic (allozyme, mtDNA) and non-genetic (otolith microchemistry, larval advection) studies of stock structure. We collected microsatellite DNA data from this species to compare the utility of these molecular markers with those genetic methods previously applied to N. macropterus. Microsatellites did not indicate significant divergence among Australian samples, or between Australian and New Zealand samples. The latter is incongruent with the allozyme and mtDNA studies, and it is suggested that allelic homoplasy has hindered the resolution of population structure when using microsatellites.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fish of the genus Gadopsis are a distinctive component of the freshwater fish fauna of south-eastern Australia. Gadopsis marmoratus and G. bispinosus are the only two species recognised within the genus, with the former of uncertain taxonomic status, as it is thought to be composed of at least two distinct geographical forms based on morphological and allozyme data. The objective of this study was to investigate DNA sequence divergence in Gadopsis, especially in the western portion of its distribution, using an approximately 400 base pair fragment of the mitochondrial small subunit 12S rRNA gene region in order to reassess the taxonomy of the genus. Individuals from 11 locations were sequenced and confirm that G. marmoratus and G. bispinosus are genetically distinct, and further that the G. marmoratus complex consists of two divergent clades representing the previously identified northern and southern forms. The degree of divergence between the three Gadopsis clades was similar (5–6% nucleotide substitutions), suggesting that they diverged from a common ancestor at approximately the same period in geological time. These results are consistent with previous allozyme studies and highlight the usefulness of mitochondrial DNA data coupled with allozyme information for clarifying taxonomic boundaries in morphologically conservative aquatic organisms.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Direct sequencing of mitochondrial DNA (mtDNA) D-loop (745 bp) and MTATPase6/MTATPase8 (857 bp) regions was used to investigate genetic variation within common carp and develop a global genealogy of common carp strains. The D-loop region was more variable than the MTATPase6/MTATPase8 region, but given the wide distribution of carp the overall levels of sequence divergence were low. Levels of haplotype diversity varied widely among countries with Chinese, Indonesian and Vietnamese carp showing the greatest diversity whereas Japanese Koi and European carp had undetectable nucleotide variation. A genealogical analysis supports a close relationship between Vietnamese, Koi and Chinese Color carp strains and to a lesser extent, European carp. Chinese and Indonesian carp strains were the most divergent, and their relationships do not support the evolution of independent Asian and European lineages and current taxonomic treatments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The mitochondrial DNA A3243G mutation causes neuromuscular disease. To investigate the muscle-specific pathophysiology of mitochondrial disease, rhabdomyosarcoma transmitochondrial hybrid cells (cybrids) were generated that retain the capacity to differentiate to myotubes. In some cases, striated muscle-like fibres were formed after innervation with rat embryonic spinal cord. Myotubes carrying A3243G mtDNA produced more reactive oxygen species than controls, and had altered glutathione homeostasis. Moreover, A3243G mutant myotubes showed evidence of abnormal mitochondrial distribution, which was associated with down-regulation of three genes involved in mitochondrial morphology, Mfn1, Mfn2 and DRP1. Electron microscopy revealed mitochondria with ultrastructural abnormalities and paracrystalline inclusions. All these features were ameliorated by anti-oxidant treatment, with the exception of the paracrystalline inclusions. These data suggest that rhabdomyosarcoma cybrids are a valid cellular model for studying muscle-specific features of mitochondrial disease and that excess reactive oxygen species production is a significant contributor to mitochondrial dysfunction, which is amenable to anti-oxidant therapy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nitric oxide (NO) is known to mediate a multitude of biological effects including inhibition of respiration at cytochrome c oxidase (COX), formation of peroxynitrite (ONOO) by reaction with mitochondrial superoxide (O2• −), and S-nitrosylation of proteins. In this study, we investigated pathways of NO metabolism in lymphoblastic leukemic CEM cells in response to glutathione (GSH) depletion. We found that NO blocked mitochondrial protein thiol oxidation, membrane permeabilization, and cell death. The effects of NO were: (1) independent of respiratory chain inhibition since protection was also observed in CEM cells lacking mitochondrial DNA (ρ0) which do not possess a functional respiratory chain and (2) independent of ONOO formation since nitrotyrosine (a marker for ONOOformation) was not detected in extracts from cells treated with NO after GSH depletion. However, NO increased the level of mitochondrial protein S-nitrosylation (SNO) determined by the Biotin Switch assay and by the release of NO from mitochondrial fractions treated with mercuric chloride (which cleaves SNO bonds to release NO). In conclusion, these results indicate that NO blocks cell death after GSH depletion by preserving the redox status of mitochondrial protein thiols probably by a mechanism that involves S-nitrosylation of mitochondrial protein thiols.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper reviews new drug targets in the treatment of depression and new drug candidates to treat depression. Depression is characterized by aberrations in six intertwined pathways: (1) inflammatory pathways as indicated by increased levels of proinflammatory cytokines, e.g. interleukin-1 (IL-1), IL-6, and tumour necrosis factor α. (2) Activation of cell-mediated immune pathways as indicated by an increased production of interferon γ and neopterin. (3) Increased reactive oxygen and nitrogen species and damage by oxidative and nitrosative stress (O&NS), including lipid peroxidation, damage to DNA, proteins and mitochondria. (4) Lowered levels of key antioxidants, such as coenzyme Q10, zinc, vitamin E, glutathione, and glutathione peroxidase. (5) Damage to mitochondria and mitochondrial DNA and reduced activity of respiratory chain enzymes and adenosine triphosphate production. (6) Neuroprogression, which is the progressive process of neurodegeneration, apoptosis, and reduced neurogenesis and neuronal plasticity, phenomena that are probably caused by inflammation and O&NS. Antidepressants tend to normalize the above six pathways. Targeting these pathways has the potential to yield antidepressant effects, e.g. using cytokine antagonists, minocycline, Cox-2 inhibitors, statins, acetylsalicylic acid, ketamine, ω3 poly-unsaturated fatty acids, antioxidants, and neurotrophic factors. These six pathways offer new, pathophysiologically guided drug targets suggesting that novel therapies could be developed that target these six pathways simultaneously. Both nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activators and glycogen synthase kinase-3 (GSK-3) inhibitors target the six above-mentioned pathways. GSK-3 inhibitors have antidepressant effects in animal models of depression. Nrf2 activators and GSK-3 inhibitors have the potential to be advanced to phase-2 clinical trials to examine whether they augment the efficacy of antidepressants or are useful as monotherapy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a comprehensive protocol for extracting DNA from egg membranes and other internal debris recovered from the interior of blown museum bird eggs. A variety of commercially available DNA extraction methods were found to be applicable. DNA sequencing of polymerase chain reaction (PCR) products for a 176-bp fragment of mitochondrial DNA was successful for most egg samples (> 78%) even though the amount of DNA extracted (mean = 14.71 ± 4.55 ng/µL) was significantly less than that obtained for bird skin samples (mean = 67.88 ± 4.77 ng/µL). For PCR and sequencing of snipe (Gallinago) DNA, we provide eight new primers for the ‘DNA barcode’ region of COI mtDNA. In various combinations, the primers target a range of PCR products sized from 72 bp to the full ‘barcode’ of 751 bp. Not all possible combinations were tested with archive snipe DNA, but we found a significantly better success rate of PCR amplification for a shorter 176-bp target compared with a larger 288-bp fragment (67% vs. 39%). Finally, we explored the feasibility of whole genome amplification (WGA) for extending the use of archive DNA in PCR and sequencing applications. Of two WGA approaches, a PCR-based method was found to be able to amplify whole genomic DNA from archive skins and eggs from museum bird collections. After WGA, significantly more archive egg samples produced visible PCR products on agarose (56.9% before WGA vs. 79.0% after WGA). However, overall sequencing success did not improve significantly (78.8% compared with 83.0%).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Here we provide MATLAB code used to simulate drift and selection between and within individuals, which has been used to investigate mitochondrial haplotype frequency shifts in Sturnus vulgaris. Also provided is a microsatellite data set used to assess whether empirical allele frequency shifts were likely to be caused by admixture. These files support and upcoming publication, which concludes that within-individuals selection on mitochondrial DNA best explains empirical data.