53 resultados para Immune System


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background
Our understanding of the importance of transcriptional regulation for biological function is continuously improving. We still know, however, comparatively little about how environmentally induced stress affects gene expression in vertebrates, and the consistency of transcriptional stress responses to different types of environmental stress. In this study, we used a multi-stressor approach to identify components of a common stress response as well as components unique to different types of environmental stress. We exposed individuals of the coral reef fish Pomacentrus moluccensis to hypoxic, hyposmotic, cold and heat shock and measured the responses of approximately 16,000 genes in liver. We also compared winter and summer responses to heat shock to examine the capacity for such responses to vary with acclimation to different ambient temperatures.
Results
We identified a series of gene functions that were involved in all stress responses examined here, suggesting some common effects of stress on biological function. These common responses were achieved by the regulation of largely independent sets of genes; the responses of individual genes varied greatly across different stress types. In response to heat exposure over five days, a total of 324 gene loci were differentially expressed. Many heat-responsive genes had functions associated with protein turnover, metabolism, and the response to oxidative stress. We were also able to identify groups of co-regulated genes, the genes within which shared similar functions.
Conclusion
This is the first environmental genomic study to measure gene regulation in response to different environmental stressors in a natural population of a warm-adapted ectothermic vertebrate. We have shown that different types of environmental stress induce expression changes in genes with similar gene functions, but that the responses of individual genes vary between stress types. The functions of heat-responsive genes suggest that prolonged heat exposure leads to oxidative stress and protein damage, a challenge of the immune system, and the re-allocation of energy sources. This study hence offers insight into the effects of environmental stress on biological function and sheds light on the expected sensitivity of coral reef fishes to elevated temperatures in the future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent evidence suggests that heat shock proteins (Hsps) may have an important systemic role as a signal to activate the immune system. Since acute exercise is known to induce Hsp72 (the inducible form of the 70-kDa family of Hsp) in a variety of tissues including contracting skeletal muscle, we hypothesized that such exercise would result in the release of Hsp72 from stressed cells into the blood. Six humans (5 males, 1 female) ran on a treadmill for 60 minutes at a workload corresponding to 70% of their peak oxygen consumption. Blood was sampled from a forearm vein at rest (R), 30 minutes during exercise, immediately postexercise (60 minutes), and 2, 8, and 24 hours after exercise. These samples were analyzed for serum Hsp72 protein. In addition, plasma creatine kinase (CK) was measured at these time points as a crude marker of muscle damage. With the exception of the sample collected at 30 minutes, muscle biopsies (n = 5 males) were also obtained from the vastus lateralis at the time of blood sampling and analyzed for Hsp72 gene and protein expression. Serum Hsp72 protein increased from rest, both during and after exercise (0.13 0.10 vs 0.87 ± 0.24 and 1.02 ± 0.41 ng/mL at rest, 30 and 60 minutes, respectively, P < 0.05, mean SE). In addition, plasma CK was elevated (P < 0.05) 8 hours postexercise. Skeletal muscle Hsp72 mRNA expression increased 6.5-fold (P < 0.05) from rest 2 hours postexercise, and although there was a tendency for Hsp72 protein expression to be elevated 2 and 8 hours following exercise compared with rest, results were not statistically significant. The increase in serum Hsp72 preceded any increase in Hsp72 gene or protein expression in contracting muscle, suggesting that Hsp72 was released from other tissues or organs. This study is the first to demonstrate that acute exercise can increase Hsp72 in the peripheral circulation, suggesting that during stress these proteins may indeed have a systemic role.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intracellular zinc homeostasis is strictly regulated by zinc binding proteins and zinc transporters. In the present study, we quantified in a first global view the expression of all characterized human zinc exporters (hZnT-1-9) in different leukocyte subsets in response to zinc supplementation and depletion and analyzed their influence on alterations in the intracellular zinc concentration. We found that hZnT-1 is the most regulated zinc exporter. Furthermore, we discovered that hZnT-4 is localized in the plasma membrane similar to hZnT-1. hZnT-4 is most highly expressed in Molt-4, up-regulated after treatment with PHA and is responsible for the measured decrease of intracellular zinc content after high zinc exposure. In addition, we found that hZnT-5, hZnT-6, and hZnT-7 in Raji as well as hZnT-6 and hZnT-7 in THP-1 are up-regulated in response to cellular zinc depletion. Those zinc exporters are all localized in the Golgi network, and this type of regulation explains the observed zinc increase in both cell types after up-regulation of their expression during zinc deficiency and, subsequently, high zinc exposure. Furthermore, we detected, for the first time, the expression of hZnT-8 in peripheral blood lymphocytes, which varied strongly between individuals. While hZnT-2 was not detectable, hZnT-3 and hZnT-9 were expressed at low levels. Further on, the amount of expression was higher in primary cells than in cell lines. These data provide insight into the regulation of intracellular zinc homeostasis in cells of the immune system and may explain the variable effects of zinc deficiency on different leukocyte subsets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of environmental stress on the physiology and behaviour of higher vertebrates has become an important avenue of research in recent years. Evidence from recent studies has suggested that the avian stress-related hormone corticosterone (CORT) may play a role in immunocompetence and sexual selection. We tested whether CORT is immunosuppressive by studying humoral and cell-mediated immune responses in populations of captive zebra finches selected for divergent peak levels of CORT. We also investigated whether selection for peak CORT has an effect on the quality of several sexually selected regions of the male zebra finch; in addition we compared morphometric parameters and the dominance ranking in males from the different selection lines. We also tested whether different components of the immune system compete for limited resources. We found that selection for divergent levels of peak CORT had little effect on humoral immunity, male sexual signal quality or dominance ranking. However, contrary to expectations, we did find a positive relationship between CORT titre and cell-mediated immunity, as well as a greater cell-mediated response in the birds selected for high CORT titre than those selected for low CORT titre. Consistent with predictions, significant negative relationships were found between both testosterone and CORT titre on humoral immunity. Birds from the low CORT lines were significantly larger in terms of skeletal size than those from the high CORT lines. Overall, our results suggest that the cell-mediated immune response is associated with a reduction in the humoral response, but only in males, and that there is no simple relationship between peak CORT levels and immune function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The immunocompetence handicap hypothesis (ICHH) suggests that dominance signals are costly because their development is controlled by testosterone, which is immunosuppressive. Signal control therefore links an increased disease risk with a high quality signal. The chest bib of the house sparrow, Passer domesticus, is a signal known to be related to dominance and under control of testosterone levels. We experimentally manipulated testosterone in male sparrows during the breeding season and again independently during the post-breeding period to test whether variation in levels of testosterone could cause variation in levels of immunocompetence. There was no effect of testosterone manipulation on the cell-mediated response of birds to phytohaemagglutinin injection, nor did testosterone levels appear to affect either white blood cell ratios or red blood cell counts. In contrast, both breeding season and post-breeding season testosterone levels had significant effects upon the humoral response of the birds to sheep red blood cell injections. However, whilst testosterone during the breeding season appeared to act immunosuppressively, the role of post-breeding levels is less clear. In concordance with a previous study, there was an indication that corticosterone is involved in mediating the immunosuppressive effects of testosterone. The strength of the secondary humoral response and the cell-mediated response were negatively related suggesting the possibility of a trade-off between the different arms of the immune system. These results provide some support for the ICHH as a mechanism promoting the evolution of costly badges of status, although the results question whether the immunosuppressive cost can be mediated by testosterone at the time of badge development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The invention provides extracts of brown seaweed of the genus Ascophyllum that have valuable pharmacological properties. In particular, compositions of the invention are useful for e.g.: inhibiting alpha-glucosidase activity; preventing or treating conditions mediated by alpha-glucosidase activity; reducing blood glucose levels; preventing or treating diabetes; modulating glucose uptake in adipocytes; preventing or treating obesity; scavenging free radicals; stimulating the immune system; activating macrophages; preventing or treating condition mediated by macrophage activation; and modulating nitric oxide production by macrophages. Methods for using the Ascophyllum extracts of the invention are provided, as are kits comprising Ascophyllum extracts of the invention and instructions for using the extracts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In multiple sclerosis, the immune system attacks the white matter of the brain and spinal cord, leading to disability and/or paralysis. Myelin, oligodendrocytes and neurons are lost due to the release by immune cells of cytotoxic cytokines, autoantibodies and toxic amounts of the excitatory neurotransmitter glutamate. Experimental autoimmune encephalomyelitis (EAE) is an animal model that exhibits the clinical and pathological features of multiple sclerosis. Current therapies that suppress either the inflammation or glutamate excitotoxicity are partially effective when administered at an early stage of EAE, but cannot block advanced disease. In a multi-faceted approach to combat EAE, we blocked inflammation with an anti-MAdCAM-1 (mucosal addressin cell adhesion molecule-1) monoclonal antibody and simultaneously protected oligodendrocytes and neurons against glutamate-mediated damage with the -amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate antagonist 2,3-dihydroxy-6-nitro-7- sulfamoylbenzo(f)quinoxaline (NBQX) and the neuroprotector glycine–proline–glutamic acid (GPE; N-terminal tripeptide of insulin-like growth factor). Remarkably, administration at an advanced stage of unremitting EAE of either a combination of NBQX and GPE, or preferably all three latter reagents, resulted in amelioration of disease and repair of the CNS, as assessed by increased oligodendrocyte survival and remyelination, and corresponding decreased paralysis, inflammation, CNS apoptosis and axonal damage. Each treatment reduced the expression of nitric oxide and a large panel of proinflammatory and immunoregulatory cytokines, in particular IL-6 which plays a critical role in mediating EAE. Mice displayed discernible improvements in all physical features examined. Disease was suppressed for 5 weeks, but relapsed when treatment was suspended, suggesting treatment must be maintained to be effective. The above approaches, which allow CNS repair by inhibiting inflammation and/or simultaneously protect neurons and oligodendrocytes from damage, could thus be effective therapies for multiple sclerosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of bacteria in the regression of tumors has long been known. Various approaches for using bacteria in cancer therapy include the use of bacteria as sensitizing agents for chemotherapy, as delivery agents for cancer drugs and as agents for gene therapy. The tumor regression stimulated by infecting microorganisms has been attributed to activation of the immune system of the host. However, recent studies indicate that when tumor-harboring mice with defective immune systems are infected with certain microorganisms, the regression of the tumor is still observed, suggesting that there are other host factors contributing to the microbial associated regression of tumors. Since the use of live or attenuated bacteria for tumor regression has associated toxic effects, studies are in progress to identify a pure microbial metabolite or any component of the microbial cell that might have anti-cancer activity. It has now been demonstrated that a redox protein from Pseudomonas aeruginosa, a cupredoxin, can enter into human cancer cells and trigger the apoptotic cell death. In vivo, this cupredoxin can lead to the regression of tumor growth in immunodeficient mice harboring xenografted melanomas and breast cancer tumors without inducing significant toxic effects, suggesting that it has potential anti-cancer activity. This bacterial protein interacts with p53 and modulates mammalian cellular activity. Hence, it could potentially be used as an anti-cancer agent for solid tumors and has translational value in tumor-targeted or in combinational-biochemotherapy strategies for cancer treatments. Here, we focus on diverse approaches to cancer biotherapy, including bacteriolytic and bacterially-derived anti-cancer agents with an emphasis on their mechanism of action and therapeutic potential.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Influenza A viruses that circulate normally in the human population cause a debilitating, though generally transient, illness that is sometimes fatal, particularly in the elderly. Severe complications arising from pandemic influenza or the highly pathogenic avian H5N1 viruses are often associated with rapid, massive inflammatory cell infiltration, acute respiratory distress, reactive hemophagocytosis and multiple organ involvement. Histological and pathological indicators strongly suggest a key role for an excessive host response in mediating at least some of this pathology. Here, we review the current literature on how various effector arms of the immune system can act deleteriously to initiate or exacerbate pathological damage in this viral pneumonia. Generally, the same immunological factors mediating tissue damage during the anti-influenza immune response are also critical for efficient elimination of virus, thereby posing a significant challenge in the design of harmless yet effective therapeutic strategies for tackling influenza virus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A central obstacle to the design of a global HIV vaccine is viral diversity. Antigenic differences in envelope proteins result in distinct HIV serotypes, operationally defined such that antibodies raised against envelope molecules from one serotype will not bind envelope molecules from a different serotype. The existence of serotypes has presented a similar challenge to vaccine development against other pathogens. In such cases, antigenic diversity has been addressed by vaccine design. For example, the poliovirus vaccine includes three serotypes of poliovirus, and Pneumovax® presents a cocktail of 23 pneumococcal variants to the immune system. It is likely that a successful vaccine for HIV must also comprise a cocktail of antigens. Here, data relevant to the development of cocktail vaccines, designed to harness diverse, envelope-specific Bcell and T-cell responses, are reviewed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Marsupial neonates are born without a fully functioning immune system, and are known to be protected in part by natural antimicrobial peptides present in their mother's milk. Monotreme neonates hatch at a similar stage in development, and it has been hypothesised that their survival in a non-sterile burrow also relies on the presence of natural antibiotics in their mother's milk. Here we review the field of monotreme lactation and the antimicrobial peptide complement of the platypus (Ornithorhynchus anatinus). Using reverse transcriptasepolymerase chain reaction of milk cell RNA from a sample of platypus milk, we found no evidence for the expression of cathelicidins or defensins in the milk. This was unexpected. We hypothesise that these natural antibiotics may instead be produced by the young platypuses themselves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A central obstacle to the design of a global HIV vaccine is viral diversity. Antigenic differences in envelope proteins result in distinct HIV serotypes, operationally defined such that antibodies raised against envelope from one serotype will not bind envelope molecules from a different serotype. The existence of serotypes has presented a similar challenge to vaccine development against other pathogens. In such cases, antigenic diversity has been addressed by vaccine design: for example, the poliovirus vaccine includes 3 serotypes of poliovirus, and Pneumovax® presents a cocktail of 23 pneumococcal variants to the immune system. It is likely that a successful vaccine for HIV must also comprise a cocktail of antigens. Here, data relevant to the development of cocktail vaccines, designed to harness diverse, envelope-specific B-cell and T-cell responses, are reviewed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Although there is cross-sectional evidence that changes in the immune system contribute to the pathophysiology of depression, longitudinal data capable of elucidating cause and effect relationships are lacking.

Aims: We aimed to determine whether subclinical systemic inflammation, as measured by serum high-sensitivity C-reactive protein (hsCRP) concentration, is associated with an increased risk of de novo major depressive disorder.

Method: Major depressive disorder was diagnosed using a clinical interview (SCID-I/NP). This is a retrospective cohort study; from a population-based sample of 1494 randomly selected women recruited at baseline during the period 1994-7, 822 were followed for a decade and provided measures of both exposure and outcome. Of these women, 644 (aged 20-84 years) had no prior history of depression at baseline and were eligible for analysis.

Results: During 5827 person-years of follow-up, 48 cases of de novo major depressive disorder were identified. The hazard ratio (HR) for depression increased by 44% for each standard deviation increase in log-transformed hsCRP (ln-hsCRP) (HR = 1.44, 95% CI 1.04-1.99), after adjusting for weight, smoking and use of non-steroidal anti-inflammatory drugs. Further adjustment for other lifestyle factors, medications and comorbidity failed to explain the observed increased risk for depression.

Conclusions: Serum hsCRP is an independent risk marker for de novo major depressive disorder in women. This supports an aetiological role for inflammatory activity in the pathophysiology of depression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lay beliefs about health and illness are individual and social, influenced by prevailing social and medical ideologies. Health beliefs clearly influence self-care motivation and have an effect on health-promoting behaviour (e.g. attendance at a screening program, food choices, adherence to prescribed medication). Further, the beliefs and attributions that people hold can directly affect physiological systems (e.g. the immune system). Health beliefs have been shown to influence a variety of patient-reported outcomes, including medication adherence, satisfaction and health-related quality of life. It is widely acknowledged that when the patient's beliefs are acknowledged and incorporated, rather than ignored, optimal biomedical patient-reported outcomes are more likely to be achieved. Several psychological models have been developed to predict health behaviours and may be utilised to identify the beliefs that inform such behaviours. These models consider the social milieu, personality, demographic, political and economic predictors of health beliefs. They demonstrate the impact of beliefs such as the causes of illness, effectiveness of healthcare and acceptability of health services, and how manipulating these can result in actual or intended behaviour change. This workshop will introduce health beliefs and discuss the psychological models that underpin the translation of belief into behaviour. The session is interactive, with participants defining health beliefs and their impact on behaviour. Participants will be invited to critique the models and apply their chosen model to a health indication of their choice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Suppressor of cytokine signaling 1 (SOCS1) has been shown to play important roles in the immune system. It acts as a key negative regulator of signaling via receptors for IFNs and other cytokines controlling T cell development, as well as Toll receptor signaling in macrophages and other immune cells. To gain further insight into SOCS1, we have identified and characterized the zebrafish socs1 gene, which exhibited sequence and functional conservation with its mammalian counterparts. Initially maternally derived, the socs1 gene showed early zygotic expression in mesodermal structures, including the posterior intermediate cell mass, a site of primitive hematopoiesis. At later time points, expression was seen in a broad anterior domain, liver, notochord, and intersegmental vesicles. Morpholino-mediated knockdown of socs1 resulted in perturbation of specific hematopoietic populations prior to the commencement of lymphopoiesis, ruling out T cell involvement. However, socs1 knockdown also lead to a reduction in the size of the developing thymus later in embryogenesis. Zebrafish SOCS1 was shown to be able to interact with both zebrafish Jak2a and Stat5.1 in vitro and in vivo. These studies demonstrate a conserved role for SOCS1 in T cell development and suggest a novel T cell-independent function in embryonic myelopoiesis mediated, at least in part, via its effects on receptors using the Jak2-Stat5 pathway.