50 resultados para Hydrogen-peroxide


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The determination of the amino acids proline, histidine, tyrosine, arginine, phenylalanine and tryptophan using flow injection analysis (FIA) with chemiluminescence detection is described. Proline was the only amino acid to exhibit chemiluminescence with the tris(2,2-bipyridyl)ruthenium(III) reaction at pH 10. While, histidine was found to selectively enhance the reaction of luminol with Mn(II) salts in a basic medium. Acidic potassium permanganate chemiluminescence was able to selectively determine tyrosine at pH 6.75. Low pressure separations using a C18 guard column allowed the simultaneous determination of tyrosine and tryptophan or phenylalanine and tryptophan with acidic potassium permanganate and copper(II)–amino acid–hydrogen peroxide chemiluminescence, respectively. Precision for each method was less than 3.9% (R.S.D.) for five replicates of a standard (1×10−5 M) and the detection limits ranged between 4×10−9 and 7×10−6 M. Preliminary investigations revealed that the methodology developed was able to selectively determine the individual amino acids in an equimolar mixture of the 20 naturally occurring amino acids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A variety of reactions to inoculation with Phytophthora cinnamomi ranging from high susceptibility to moderate resistance were found in 20 ecotypes of Arabidopsis thaliana. P. cinnamomi zoospores successfully colonised both root and leaf tissue of Arabidopsis and sporulation in the form of chlamydospores and sporangia occurred in leaves and roots of each ecotype but the number varied considerably between ecotypes. In the more susceptible ecotypes, colonisation was characterised by rapid intercellular growth and sporulation of the pathogen from 48 h post inoculation. In less susceptible ecotypes, P. cinnamomi was limited to a defined region within tissues. In response to P. cinnamomi infection, several ecotypes expressed active defence responses in both root and leaf tissue. Callose formation was closely associated with lesion restriction as was the production of the reactive oxygen species, hydrogen peroxide. The oxidative burst was not limited to the site of pathogen ingress but also occurred in distant, uninfected tissues. We have characterised an Arabidopsis–P. cinnamomi system that will be useful for further studies of active resistance mechanisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dark brown Alpaca fiber was reduced in shade via selective bleaching with peroxide. Two selective oxidative bleaching methods were tested on alpaca top to assess their effectiveness for color removal and fiber quality properties. Color change, bundle strength, weight loss, fiber diameter, surface modification, dye-ability and dye wash fastness were assessed for both methods and compared with the original brown top. Bleach method 1 (BL-I) showed little surface modification, 5.8 % weight loss and 2.4 % strength loss. D1925 yellowness index was reduced to 74.3 from 83.1 and provided a good base for the dyeing of medium to deep shades. Bleach method 2 (BL-II) displayed considerable surface modification, 7.8 % weight loss and 18 % strength loss. BL-II also resulted in a mean diameter reduction of 1.9 micron during bleaching. Yellow-ness was reduced to 64.5 from 83.1 and provided a very good base for the dyeing of medium to deep shades. BL-I showed better exhaustion of the pre-metallised dye Lanaset Violet B than BL-II. Wash fastness for BL-II was 1 grey scale unit poorer than BL-I. BL-II showed far better color clarity at pale depths however the wash fastness of the finished product was not good enough to maintain the depth or clarity of the color. BL-I showed poorer clarity of color but exhibited better wash fastness results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A simple model peroxyoxalate chemiluminescence system was monitored directly across a range of temperatures (from −80 to +20 °C) using 13C nuclear magnetic resonance spectroscopy. These experiments were made possible by the utilisation of 13C doubly labelled oxalyl chloride, which was reacted with anhydrous hydrogen peroxide in dry tetrahydrofuran. Ab initio quantum calculations were also performed to estimate the 13C nuclear magnetic resonance (NMR) shift of the most commonly postulated key intermediate 1,2-dioxetanedione and this data, in concert with the spectroscopic evidence, confirmed its presence during the reaction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reports the effects of bleaching of alpaca tops and dyeing of bleached alpaca tops/yarns on the quality of tops and yarns. A dark brown alpaca top was bleached with hydrogen peroxide. Two bleaching methods were tried for effectiveness of color removal. A portion of each bleached top was dyed after bleaching. Color parameters were examined for unbleached, bleached and bleached/dyed tops, these tops were then converted into yarns of different twist levels and counts using a worsted spinning system. Some of the bleached yarn from each bleaching method was dyed in a package dye vat to compare the difference of top dyeing versus yarn package dyeing on yarn quality. Fiber diameter, yarn strength, yarn evenness, yarn hairiness and fiber degradation were tested to examine the effects of bleaching and dyeing on these properties at top and yarn stages. A processing route for bleaching and dyeing alpaca fiber was recommended.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The chemiluminescence accompanying the oxidation of salicylic hydrazide (2-hydroxybenzoic acid hydrazide) with hypochlorite, hypobromite, N-chlorosuccinimide, N-bromosuccinimide or hydrogen peroxide with cobalt(II) matched the photoluminescence emission of salicylic acid. In a related reaction, the oxidation of a mixture of isoniazid and ammonia, a synergistic effect was observed. The chemiluminescence spectrum for this reaction matches that accompanying the oxidation of the hydrazide, rather than the oxidation of ammonia. These results were used to assess mechanisms proposed by previous authors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alpaca fibers have some distinct properties such as softness and warmth, which have not been fully understood in combination with the fiber internal structures. In the present investigation, the internal structures of alpaca fibers have been closely examined under the scanning electron microscope (SEM), especially in the longitudinal direction. The results showed that numerous pigment granules reside loosely inside pockets in brown and dark-brown alpaca fibers. These pigment granules were mainly distributed inside the cortical cells, the medullation regions as well as underneath the cuticles. Their size in the brown alpaca fibers was smaller and more uniformly round than in the dark-brown fibers. These granules in colored alpaca fibers loosen the bundle of cortical cells, providing many crannies in the fibers which may contribute to the superior flexibility, warmth and softness of the fibers. Moreover, there are no heavy metal elements found in the granules. The mordant hydrogen peroxide bleaching employed could eliminate the pigment granules and create many nano-volumes for further dyeing of fibers into more attractive colors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ofloxacin is a synthetic fluoroquinolone antibiotic that has been used in the treatment of respiratory tract, urinary tract and tissue-based infections. Methodology for the determination of ofloxacin based on chemiluminescence detection can be divided into: direct oxidation with tris(2,2′-bipyridyl)ruthenium(III) or permanganate; and enhancement of the emission from either the oxidation of sulfite or the reaction between sodium nitrite and hydrogen peroxide. In this paper, we compare the analytical methodology and evaluate the light-producing pathways that have been proposed for these reactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A high degradation extent of benzo[a]pyrene (BaP) should not be considered as the sole desirable criterion for the bioremediation of BaP-contaminated soils because some of its accumulated metabolites still have severe health risks to human. Two main metabolites of BaP, benzo[a]pyrene-1,6-quinone (BP1,6-quinone) and 3-hydroxybenzo[a]pyrene (3-OHBP) were identified by high performance liquid chromatography (HPLC) with standards. This study was the first time that degradation of both BaP and the two metabolites was carried out by chemical oxidation and biodegradation. Three main phases during the whole degradation process were proposed.

Hydrogen peroxide–zinc (H2O2–Zn), the fungus – Aspergillus niger and the bacteria – Zoogloea sp. played an important role in the different phases. The degradation parameters of the system were also optimized, and the results showed that the effect of degradation was the best when fungus–bacteria combined with H2O2–Zn, the concentration range of BaP in the cultures was 30–120 mg/l, the initial pH of the cultures was 6.0. However, as co-metabolites, phenanthrene significant inhibited the degradation of BaP. This combined degradation system compared with the conventional method of degradation by domestic fungus only, enhanced the degradation extent of BaP by more than 20% on the 12 d. The highest accumulation of BP1,6-quinone and 3-OHBP were reduced by nearly 10% in the degradation experiments, which further proved that the combined degradation system was more effective as far as joint toxicity of BaP and its metabolites are concerned.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Retrotransposons have clearly molded the structure of the human genome. The reverse transcriptase coded for by long interspersed nuclear elements (LINEs) accounts for 35% of the human genome, with 8–9 x 105 copies of the most common human LINE element, L1Hs. Retrotransposons cycle through an RNA intermediate with transcription as the rate limiting step. Because various retrotransposons have been demonstrated to be induced by environmental stimuli, we investigated the response of the L1Hs promoter to various agents. L1Hs promoter activity was analyzed by transfecting an L1Hs-expressing cell line with plasmids containing one of two L1Hs promoters fused to the LacZ reporter gene. L1Hs promoter activity was then monitored with a ß-galactosidase assay. Treatment with UV light and heat shock resulted in a small increase in ß-galactosidase activity from one promoter, while treatment with tetradecanoylphorbol 13-acetate resulted in small increases in ß-galactosidase activity from both promoters. No increase in ß-galactosidase activity was observed after exposure to X-rays or hydrogen peroxide.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Further consideration has been given to the reaction pathway of a model peroxyoxalate chemiluminescence system. Again utilising doubly labelled oxalyl chloride and anhydrous hydrogen peroxide, 2D EXSY 13C nuclear magnetic resonance (NMR) spectroscopy experiments allowed for the characterisation of unknown products and key intermediate species on the dark side of the peroxyoxalate chemiluminescence reaction. Exchange spectroscopy afforded elucidation of a scheme comprised of two distinct mechanistic pathways, one of which contributes to chemiluminescence. 13C NMR experiments carried out at varied reagent molar ratios demonstrated that excess amounts of hydrogen peroxide favoured formation of 1,2-dioxetanedione: the intermediate that, upon thermolysis, has been long thought to interact with a fluorophore to produce light.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fibers based regenerated protein draw much attention for recycling discarded protein resources and can produce biodegradable and environmental friendly polymers. In this study, superfine wool powder is blended with polypropylene (PP) to produce wool powder/PP blend film through extrusion and hot-pressing. Hydrogen peroxide is used to bleach the black colored surface of the blend films. The effects of peroxide concentration, bleaching time and powder content on the final whiteness and mechanical properties of the blend films are investigated.

The bleached films are dyed with acid red dyes and the dyed color is evaluated using a Computer Color Matching System. Color characters of dyed films, such as L*, a*, b*, ΔE*ab, C*ab and K/S values are measured and analyzed. The study not only reuses discarded wool resources into organic powder, widens the application of superfine wool powder on polymers, but also improves the dyeing properties of PP through the addition of protein content.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alzheimer's disease (AD) is characterised by the formation of amyloid deposits composed primarily of the amyloid β-peptide (Aβ). This peptide has been shown to bind redox active metals ions such as copper and iron, leading to the production of reactive oxygen species (ROS) and formation of hydrogen peroxide (H2O2). The generation of H2O2 has been linked with Aβ neurotoxicity and neurodegeneration in AD. Because of the relative stability of a tyrosyl radical, the tyrosine residue (Tyr-10) is believed to be critical to the neurotoxicity of Aβ. This residue has also been shown to be important to Aβ aggregation and amyloid formation. It is possible that the formation of an Aβ tyrosyl radical leads to increased aggregation via the formation of dityrosine as an early aggregation step, which is supported by the identification of dityrosine in amyloid plaque. The role of dityrosine formation in Aβ aggregation and neurotoxicity is as yet undetermined, partly because there are no facile methods for the synthesis of Aβ dimers containing dityrosine. Here we report the use of horseradish peroxidase and H2O2 to dimerise N-acetyl-l-tyrosine ethyl ester and apply the optimised conditions for dityrosine formation to fully unprotected Aβ peptides. We also report a simple fluorescent plate reader method for monitoring Aβ dimerisation via dityrosine formation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Studies have shown that, in isolated skeletal muscles, maximum isometric force production (Po) is dependent on muscle redox state. Endurance training increases the antioxidant capacity of skeletal muscles, a factor that could impact on the force-producing capacity following exogenous exposure to an oxidant. We tested the hypothesis that 12 weeks treadmill training would increase anti-oxidant capacity in rat skeletal muscles and alter their response to exogenous oxidant exposure.

2. At the conclusion of the 12 week endurance-training programme, soleus (slow-twitch) muscles from trained rats had greater citrate synthase (CS) and catalase (CAT) activity compared with soleus muscles from untrained rats (P < 0.05).
In contrast, CAT activity of extensor digitorum longus (EDL; fast-twitch) muscles from trained rats was not different to EDL muscles of untrained rats. The CS activity was lower in EDL muscles from trained compared with untrained rats (P < 0.05).

3. Equilibration with exogenous hydrogen peroxide (H2O2, 5 mmol/L) increased the Po of soleus muscles from untrained rats for the duration of treatment (30 min), whereas the Po of EDL muscles was affected biphasically, with a small increase initially (after 5 min), followed by a more marked decrease in Po (after 30 min). The H2O2-induced increase in Po of soleus muscles from trained rats was less than that in untrained rats (P < 0.05), but no differences were observed in the Po of EDL muscles following training.

4. The results indicate that 12 weeks endurance running training conferred adaptations in soleus but not EDL muscles. These adaptations were associated with an attenuation of the oxidant-induced increase in Po of soleus muscles from trained compared with untrained rats. We conclude that endurance training-adapted soleus muscles have a slightly altered redox - force relationship.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The plant hormone, abscisic acid (ABA), has previously been shown to have an impact on the resistance or susceptibility of plants to pathogens. In this thesis, it was shown that ABA had a regulatory effect on an extensive array of plant defence responses in three different plant and pathogen interaction combinations as well as following the application of an abiotic elicitor. In unique studies using ABA deficient mutants of Arabidopsis, exogenous ABA addition or ABA biosynthesis inhibitor application and simulated drought stress, ABA was shown to have a profound effect on the outcome of interactions between plants and pathogens of differing lifestyles and from different kingdoms. The systems used included a model plant and an important agricultural species: Arabidopsis thaliana (Arabidopsis) and Peronospora parasitica (a biotrophic Oomycete pathogen), Arabidopsis and Pseudomonas syringae pathovar tomato (a biotrophic bacterial pathogen) and an unrelated plant species, soybean (Glycine max) and Phytophthora sojae (a hemibiotrophic Oomycete pathogen), Generally, a higher than basal endogenous ABA concentration within plant tissues at the time of avirulent pathogen inoculation, caused an interaction shift towards what phenotypically resembled susceptibility. Conversely, a lower than basal endogenous ABA concentration in plants inoculated with a virulent pathogen caused a shift towards resistance. An extensive suppressive effect of ABA on defence responses was revealed by a range of techniques that included histochemical, biochemical and molecular approaches. A universal effect of ABA on suppression or induction of the phenylpropanoid pathway via regulation of the key entry point gene, phenylalanine ammonia-lyase (PAL), when stimulated by biotic or abiotic elicitors was shown. ABA also influenced a wide variety of other defence-related components such as: the development of a hypersensitive response (HR), the accumulation of the reactive oxyden species, hydrogen peroxide and the cell wall strengthening compounds lignin and callose, accumulation of SA and the phytoalexin, glyceollin and the transcription of the SA-dependent pathogenesis- related gene (PR-1). The near genome-wide microarray gene expression analysis of an ABA induced susceptible interaction also revealed an yet unprecedented insight into the great diversity of defence responses that were influenced by ABA that included: disease resistance like proteins, antimicrobial proteins as well as phenylpropanoid and tryptophan pathway enzymes. Subtle differences were found in the number and type of defence responses that were regulated by ABA in each type of plant and pathogen interaction that was studied. This thesis has clearly identified in plant/pathogen interactions previously unknown and important roles for ABA in the regulation of many defence responses.