124 resultados para GLUCOSE-TRANSPORTER-1


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The contribution of mitochondrial dysfunction to insulin resistance is a contentious issue in metabolic research. Recent evidence implicates mitochondrial dysfunction as contributing to multiple forms of insulin resistance. However, some models of mitochondrial dysfunction fail to induce insulin resistance, suggesting greater complexity describes mitochondrial regulation of insulin action. We report that mitochondrial dysfunction is not necessary for cellular models of insulin resistance. However, impairment of mitochondrial function is sufficient for insulin resistance in a cell type-dependent manner, with impaired mitochondrial function inducing insulin resistance in adipocytes, but having no effect, or insulin sensitising effects in hepatocytes. The mechanism of mitochondrial impairment was important in determining the impact on insulin action, but was independent of mitochondrial ROS production. These data can account for opposing findings on this issue and highlight the complexity of mitochondrial regulation of cell type-specific insulin action, which is not described by current reductionist paradigms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Insulin- and contraction-stimulated increases in glucose uptake into skeletal
muscle occur in part as a result of the translocation of glucose transporter 4
(GLUT4) from intracellular stores to the plasma membrane (PM). This study
aimed to use immunofluorescence microscopy in human skeletal muscle to
quantify GLUT4 redistribution from intracellular stores to the PM in response
to glucose feeding and exercise. Percutaneous muscle biopsy samples were
taken from the m. vastus lateralis of ten insulin-sensitive men in the basal
state and following 30 min of cycling exercise (65% VO2 max). Muscle biopsy
samples were also taken from a second cohort of ten age-, BMI- and VO2 maxmatched insulin-sensitive men in the basal state and 30 and 60 min following
glucose feeding (75 g glucose). GLUT4 and dystrophin colocalization, measured
using the Pearson’s correlation coefficient, was increased following
30 min of cycling exercise (baseline r = 0.47 0.01; post exercise
r = 0.58 0.02; P < 0.001) and 30 min after glucose ingestion (baseline
r = 0.42 0.02; 30 min r = 0.46 0.02; P < 0.05). Large and small GLUT4
clusters were partially depleted following 30 min cycling exercise, but not
30 min after glucose feeding. This study has, for the first time, used immunofluorescence microscopy in human skeletal muscle to quantify increases in
GLUT4 and dystrophin colocalization and depletion of GLUT4 from large
and smaller clusters as evidence of net GLUT4 translocation to the PM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this study was to assess the effects of short-term sprint training on transient changes in monocarboxylate lactate transporter 1 (MCT1) and MCT4 protein and mRNA content. Seven moderately endurance-trained runners (mean ± SE; age 27.7±2.9 years, body mass 81.1±5.9 kg, VO2 max 58.1±2.0 ml kg−1 min−1) completed a VO2 max and a supramaximal running test to exhaustion (RTE) before and after a 6-week period of sprint training. The sprint training was progressive and consisted of 18 sessions of near maximal short duration (5–15 s) sprints to compliment the athlete’s endurance training. Prior to the training period there was a significant (P<0.05) increase in MCT1, but not MCT4 protein, 2 h after the RTE. This occurred without any change in corresponding mRNA levels. After the training period, there was a significant increase in MCT1 protein but no significant change in the MCT4 isoform. Both MCT1 and MCT4 mRNA was significantly lower at rest and 2 h post-RTE after the completion of the training period. After the training period, there was a significant increase in the time to exhaustion and distance covered during the RTE. This study demonstrates that sprint training of this length and type results in an upregulation of MCT1 protein, but not MCT4 content. Additionally, this study shows conflicting adaptations in MCT1 and MCT4 protein and mRNA levels following training, which may indicate post-transcriptional regulation of MCT expression in human muscle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Insulin stimulates glucose transport in adipocytes and muscle cells by triggering redistribution of the GLUT4 glucose transporter from an intracellular perinuclear location to the cell surface. Recent reports have shown that the microtubule-depolymerizing agent nocodazole inhibits insulin-stimulated glucose transport, implicating an important role for microtubules in this process. In the present study we show that 2 µM nocodazole completely depolymerized microtubules in 3T3-L1 adipocytes, as determined morphologically and biochemically, resulting in dispersal of the perinuclear GLUT4 compartment and the Golgi apparatus. However, 2 µM nocodazole did not significantly effect either the kinetics or magnitude of insulin-stimulated glucose transport. Consistent with previous studies, higher concentrations of nocodazole (10-33 µM) significantly inhibited basal and insulin-stimulated glucose uptake in adipocytes. This effect was not likely the result of microtubule depolymerization because in the presence of taxol, which blocked nocodazole-induced depolymerization of microtubules as well as the dispersal of the perinuclear GLUT4 compartment, the inhibitory effect of 10-33 µM nocodazole on insulin-stimulated glucose uptake prevailed. Despite the decrease in insulin-stimulated glucose transport with 33 µM nocodazole we did not observe inhibition of insulin-stimulated GLUT4 translocation to the cell surface under these conditions. Consistent with a direct effect of nocodazole on glucose transporter function we observed a rapid inhibitory effect of nocodazole on glucose transport activity when added to either 3T3-L1 adipocytes or to Chinese hamster ovary cells at 4 °C. These studies reveal a new and unexpected effect of nocodazole in mammalian cells which appears to occur independently of its microtubule-depolymerizing effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ionic copper entering blood plasma binds tightly to albumin and the macroglobulin transcuprein. It then goes primarily to the liver and kidney except in lactation, where a large portion goes directly to the mammary gland. Little is known about how this copper is taken up from these plasma proteins. To examine this, the kinetics of uptake from purified human  albumin and α2-macroglobulin, and the effects of inhibitors, were measured using human hepatic (HepG2) and mammary epithelial (PMC42) cell lines. At physiological concentrations (3–6 µM), both cell types took up copper from these proteins independently and at rates similar to each other and to those for Cu-dihistidine or Cu-nitrilotriacetate (NTA). Uptakes from   α2-macroglobulin indicated a single saturable system in each cell type, but with different kinetics, and 65–80% inhibition by Ag(I) in HepG2 cells but not PMC42 cells. Uptake kinetics for Cu-albumin were more complex and also differed with cell type (as was the case for Cu-histidine and NTA), and there was little or no inhibition by Ag(I). High Fe(II) concentrations (100–500 µM) inhibited copper uptake from albumin by 20–30% in both cell types and that from {alpha}2-macroglobulin by 0–30%, and there was no inhibition of the latter by Mn(II) or Zn(II). We conclude that the proteins mainly responsible for the plasma-exchangeable copper pool deliver the metal to mammalian cells efficiently and by several different mechanisms.α2-Macroglobulin delivers it primarily to copper transporter 1 in hepatic cells but not mammary epithelial cells, and additional as-yet-unidentified copper transporters or systems for uptake from these proteins remain to be identified.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Sustainable Farm Families project (http://www.sustainablefarmfamilies.org.au/) was a 3-year demonstration and education project designed to influence farmer behavior with respect to family health and well-being among cropping and grazing farmers in Victoria, New South Wales, and South Australia, Australia. The project was conducted by the Western District Health Service, Hamilton, Australia, in partnership with farmers; Farm Management 500 (peer discussion group); the Victorian Farmers Federation; Royal Melbourne Institute of Technology; and Land Connect. During the 3 years of the project, 128 farmers—men (70) and women (58)—were enrolled. The project utilized a combination of small group workshops, individualized health action plans, and health education opportunities to encourage farm safety and health behavior changes and to elicit sustained improvements in the following health indicators: body mass index (BMI), total cholesterol, fasting blood glucose, and blood pressure. Mean changes in these health indicators were analyzed using repeated measures analysis of variance (ANOVA) and McNemar's test compared the proportion of individuals with elevated indicators. Among participants with elevated values at baseline, the following average reductions were observed: BMI 0.44 kg/m2 (p = .0034), total cholesterol 48.7 mg/dl (p < .0001), blood glucose 10.1 mg/dl (p = .0016), systolic blood pressure 12.5 mm Hg (p < .0001), and diastolic blood pressure 5.0 mm Hg (p = .0007). The proportion of participants with elevated total cholesterol at baseline decreased after 24 months (p < .001). Such findings suggest that proactive intervention by farmer associations, rural health services, and government agencies may be an effective vehicle for promoting voluntary farm safety and health behavior change while empowering farm families to achieve measurable reductions in important health risk factors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glycogen availability can influence glucose transporter 4 (GLUT4) expression in skeletal muscle through unknown mechanisms. The multisubstrate enzyme AMP-activated protein kinase (AMPK) has also been shown to play an important role in the regulation of GLUT4 expression in skeletal muscle. During contraction, AMPK [alpha]2 translocates to the nucleus and the activity of this AMPK isoform is enhanced when skeletal muscle glycogen is low. In this study, we investigated if decreased pre-exercise muscle glycogen levels and increased AMPK [alpha]2 activity reduced the association of AMPK with glycogen and increased AMPK [alpha]2 translocation to the nucleus and GLUT4 mRNA expression following exercise. Seven males performed 60 min of exercise at ~70% [VO.sub.2] peak on 2 occasions: either with normal (control) or low (LG) carbohydrate pre-exercise muscle glycogen content. Muscle samples were obtained by needle biopsy before and after exercise. Low muscle glycogen was associated with elevated AMPK [alpha]2 activity and acetyl-CoA carboxylase [beta] phosphorylation, increased translocation of AMPK [alpha]2 to the nucleus, and increased GLUT4 mRNA. Transfection of primary human myotubes with a constitutively active AMPK adenovirus also stimulated GLUT4 mRNA, providing direct evidence of a role of AMPK in regulating GLUT4 expression. We suggest that increased activation of AMPK [alpha]2 under conditions of low muscle glycogen enhances AMPK [alpha]2 nuclear translocation and increases GLUT4 mRNA expression in response to exercise in human skeletal muscle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increasing the number of glucose transporters in muscle ameliorates many of the symptoms associated with type 2 diabetes. This thesis identifies mechanisms regulating glucose transporter gene expression, and therefore glucose transporter number, in human skeletal muscle and provides potential targets for the treatment and management of type 2 diabetes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reduced glucose utilization is likely to precede the onset of cognitive deficits in Alzheimer's disease (AD). Similar aberrant glucose metabolism can also be detected in the brain of several AD mouse models. Although the cause of this metabolic defect is not well understood, it could be related to impaired insulin signaling that is increasingly being reported in AD brain. However, the temporal relationship between insulin impairment and amyloid-β (Aβ) biogenesis is unclear. In this study using female AβPPsw/PS1ΔE9 mice, we found that the level of Aβ40 was fairly constant in 6- to 15-month-old brains, whereas Aβ42 was only significantly increased in the 15-month-old brain. In contrast, increased levels of IRβ, IGF-1R, IRS1, and IRS-2, along with reduced glucose and insulin content, were detected earlier in the 12-month-old brains of AβPPsw/PS1ΔE9 mice. The reduction in brain glucose content was accompanied by increased GLUT3 and GLUT4 levels. Importantly, these changes precede the significant upregulation of Aβ42 level in the 15-month-old brain. Interestingly, reduction in the p85 subunit of PI3K was only apparent in the 15-month-old AβPPsw/PS1ΔE9 mouse brain. Furthermore, the expression profile of IRβ, IRS-2, and p85/PI3K in AβPPsw/PS1ΔE9 was distinct in wild-type mice of a similar age. Although the exact mechanisms underlining this connection remain unclear, our results suggest a possible early role for insulin signaling impairment leading to amyloid accumulation in AβPPsw/PS1ΔE9 mice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Disturbances in brain copper result in rare and severe neurological disorders and may play a role in the pathogenesis and progression of multiple neurodegenerative diseases. Our current understanding of mammalian brain copper transport is based on model systems outside the central nervous system and no data are available regarding copper transport systems in the human brain. To address this deficit, we quantified regional copper concentrations and examined the distribution and cellular localization of the copper transport proteins Copper transporter 1, Atox1, ATP7A, and ATP7B in multiple regions of the human brain using inductively coupled plasma-mass spectrometry, Western blot and immunohistochemistry. We identified significant relationships between copper transporter levels and brain copper concentrations, supporting a role for these proteins in copper transport in the human brain. Interestingly, the substantia nigra contained twice as much copper than that in other brain regions, suggesting an important role for copper in this brain region. Furthermore, ATP7A levels were significantly greater in the cerebellum, compared with other brain regions, supporting an important role for ATP7A in cerebellar neuronal health. This study provides novel data regarding copper regulation in the human brain, critical to understand the mechanisms by which brain copper levels can be altered, leading to neurological disease.