27 resultados para Epidermal growth factor receptor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Granulocyte colony-stimulating factor (G-CSF) is a key regulator of granulopoiesis via stimulation of a specific cell-surface receptor, the G-CSF-R, found on hematopoietic progenitor cells as well as neutrophilic granulocytes. It is perhaps not surprising, therefore, that mutations of the G-CSF-R has been implicated in several clinical settings that affect granulocytic differentiation, particularly severe congenital neutropenia, myelodysplastic syndrome and acute myeloid leukemia. However, other studies suggest that signalling via the G-CSF-R is also involved in a range of other malignancies. This review focuses on the molecular mechanisms through which the G-CSF-R contributes to disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most severe congenital neutropenia (SCN) cases possess constitutive neutrophil elastase mutations; a smaller cohort has acquired mutations truncating the granulocyte colony-stimulating factor receptor (G-CSF-R). We have described a case with constitutive extracellular G-CSF-R mutation hyporesponsive to ligand. Here we report two independent acquired G-CSF-R truncation mutations and a novel constitutive neutrophil elastase mutation in this patient. Co-expression of a truncated receptor chain restored STAT5 signalling responses of the extracellular G-CSF-R mutant, while constitutively-active STAT5 enhanced its proliferative capacity. These data add to our knowledge of SCN and further highlight the importance of STAT5 in mediating proliferative responses to G-CSF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The granulocyte colony-stimulating factor receptor (G-CSFR) plays an important role in the production, survival and activation of neutrophilic granulocytes during both normal and emergency hematopoiesis. The G-CSFR also participates in the development of other myeloid lineages, the mobilization of hematopoietic stem cells and myeloid cell migration. This has lead to several important clinical applications for its ligand, G-CSF. More recently, additional important roles for G-CSFR have emerged outside the hematopoietic system, such as in the protection and repair of a diverse range of tissues, including muscle, liver and neural tissue, providing further scope for developing G-CSF as a therapeutic agent. The G-CSFR has also been implicated in the etiology of disease, with mutations/variants of G-CSFR implicated in neutropenia, myelodysplasia and leukemia. Additionally, autocrine/paracrine stimulation of G-CSFR may be important in the biology of solid tumors, including metastasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The insulin-like growth factor (IGF) system is a key regulator of cell growth, survival and differentiation, and these functions are co-modulated by other growth factors including fibroblast growth factor-2 (FGF-2). To investigate IGF/FGF interactions in neuronal cells, we employed neuroblastoma cells (SK-N-MC). In serum free conditions proliferation of the SK-N-MC cells was promoted by IGF-I (25 ng/ml), but blunted by FGF-2 (50 ng/ml). IGF-I-induced proliferation was abolished in the presence of FGF-2 even when IGF-I was used at 100 ng/ml. In addition to our previously described FGF-2 induced proteolytic cleavage of IGFBP-2, we found that FGF-2 increased IGFBP-6 levels in conditioned medium (CM) without affecting IGFBP-6 mRNA abundance. Modulation of IGFBP-2 and -6 levels were not significant mechanisms involved in the blockade of IGF-I action since the potent IGF-I analogues [QAYL]IGF-I and des(1-3)IGF-I (minimal IGFBP affinity) were unable to overcome FGF-2 inhibition of cell proliferation. FGF-2 treated cells showed morphological differentiation expressing the TUJ1 neuronal marker while cells treated with IGF-I alone showed no morphological change. When IGF-I was combined with FGF-2, however, cell morphology was indistinguishable from that seen with FGF-2 alone. FGF-2 inhibited proliferation and enhanced differentiation was also associated with a 70% increase in cell death. Although IGF-I alone was potently anti-apoptotic (60% decreased), IGF-I was unable to prevent apoptosis when administrated in combination with FGF-2. Gene-array analysis confirmed FGF-2 activation of the intrinsic and extrinsic apoptotic pathways and blockade of IGF anti-apoptotic signaling. FGF-2, directly and indirectly, overcomes the proliferative and anti-apoptotic activity of IGF-I by complex mechanisms, including enhancement of differentiation and apoptotic pathways, and inhibition of IGF-I induced anti-apoptotic signalling. Modulation of IGF binding protein abundance by FGF-2 does not play a significant role in inhibition of IGF-I induced mitogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much of the CD8+ T cell response in H2b mice with influenza pneumonia is directed at the nucleoprotein366-374 (NP366) and acid polymerase224-233 (PA224) peptides presented by the H2Db MHC class I glycoprotein. These DbNP366- and DbPA224-specific T cell populations are readily analyzed by staining with tetrameric complexes of MHC+ peptide (tetramers) or by cytokine production subsequent to in vitro stimulation with the cognate peptides. The DbPA224-specific CD8+ effector T cells make more tumor necrosis factor (TNF) α than the comparable CD8+DbNP366+ set, a difference reflected in the greater sensitivity of the CD8+DbPA224+ population to TNF receptor (TNFR) 2-mediated apoptosis under conditions of in vitro culture. Freshly isolated CD8+DbNP366+ and CD8+DbPA224+ T cells from influenza-infected TNFR2-/- mice produce higher levels of IFN-γ and TNF-α after in vitro stimulation with peptide, although the avidity of the T cell receptor-epitope interaction does not change. Increased numbers of both CD8+DbPA224+ and CD8+DbNP366+ T cells were recovered from the lungs (but not the spleens) of secondarily challenged TNFR2-/- mice, a pattern that correlates with the profiles of TNFR expression in the TNFR2+/+ controls. Thus, it seems that TNFR2-mediated editing of influenza-specific CD8+ T cells functions to limit the numbers of effectors that have localized to the site of pathology in the lung but does not modify the size of the less activated responder T cell populations in the spleen. Therefore, the massive difference in magnitude for the secondary, although not the primary, response to these DbNP366 and DbPA224 epitopes cannot be considered to reflect differential TNFR2-mediated T cell editing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Granulocyte colony-stimulating factor receptor (GCSFR) signaling participates in the production of neutrophilic granulocytes during normal hematopoietic development, with a particularly important role during emergency hematopoiesis. This study describes the characterization of the zebrafish gcsf and gcsfr genes, which showed broad conservation and similar regulation to their mammalian counterparts. Morpholino-mediated knockdown of gcsfr and overexpression of gcsf revealed the presence of an anterior population of myeloid cells during primitive hematopoiesis that was dependent on GCSF/GCSFR for development and migration. This contrasted with a posterior domain that was largely independent of this pathway. Definitive myelopoiesis was also partially dependent on a functional GCSF/GCSFR pathway. Injection of bacterial lipopolysaccharide elicited significant induction of gcsf expression and emergency production of myeloid cells, which was abrogated by gcsfr knockdown. Collectively, these data demonstrate GCSF/GCSFR to be a conserved signaling system for facilitating the production of multiple myeloid cell lineages in both homeostatic and emergency conditions, as well as for early myeloid cell migration, establishing a useful experimental platform for further dissection of this pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we have investigated the ability of insulin-like growth factor I (IGF-I) to inhibit HIV long terminal repeat (LTR)-driven gene expression. Using COS 7 cells cotransfected with tat and an HIV LTR linked to a chloramphenicol acetyltransferase (CAT) reporter, we observed that physiological levels of IGF-I (10-9 M) significantly inhibited CAT expression in a concentration- and time-dependent manner. IGF-I did not inhibit C AT expression in COS 7 cells transfected with pSVCAT, and did not affect CAT expression in the absence of cotransfection with tat . Transfection of HIV-1 proviral DNA into COS 7 cells +/- IGF-I resulted in a significant decrease ( p 0.05) in infectious virion production. Both IGF-I and Ro24-7429 inhibited LTR-driven C AT expression, while TNF- alpha -enhanced CAT expression was not affected by IGF-I. On the other hand, a plasmid encoding parathyroid hormone-related peptide exhibited dramatic additivity of inhibition of CAT expression in COS 7 cells. Finally, we show that in Jurkat or U937 cells cotransfected with HIVLTRCAT/tat, IGF-I significantly inhibited CAT expression. Further, interleukin 4 showed in U937 cells inhibition of CAT expression that was not additive to IGF-I induced inhibition. Our data demonstrate that IGF-I can specifically inhibit HIVLTRCAT expression. This inhibition may occur at the level of the tat /TAR interaction. Finally, this IGF-I effect is seen in target cell lines and similar paths of inhibition may be involved in the various cell types employed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reduced extracellular matrix accumulation in the sclera of myopic eyes leads to increased ocular extensibility and is related to reduced levels of scleral transforming growth factor-β (TGF-β). The current study investigated the impact of this extracellular environment on scleral cell phenotype and cellular biomechanical characteristics. Scleral cell phenotype was investigated in vivo in a mammalian model of myopia using the myofibroblast marker, α-smooth muscle actin (α-SMA). In eyes developing myopia α-SMA levels were increased, suggesting increased numbers of contractile myofibroblasts, and decreased in eyes recovering from myopia. To understand the factors regulating this change in scleral phenotype, the competing roles of TGF-β and mechanical stress were investigated in scleral cells cultured in three-dimensional collagen gels. All three mammalian isoforms of TGF-β altered scleral cell phenotype to produce highly contractile, α-SMA-expressing myofibroblasts (TGF-β3 > TGF-β2 > TGF-β1). Exposure of cells to the reduced levels of TGF-β found in the sclera in myopia produced decreased cell-mediated contraction and reduced α-SMA expression. These findings are contrary to the in vivo gene expression data. However, when cells were exposed to both the increased stress and the reduced levels of TGF-β found in myopia, increased α-SMA expression was observed, replicating in vivo findings. These results show that although reduced scleral TGF-β is a major contributor to the extracellular matrix remodeling in the myopic eye, it is the resulting increase in scleral stress that dominates the competing TGF-β effect, inducing increased α-SMA expression and, hence, producing a larger population of contractile cells in the myopic eye.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Granulocyte colony-stimulating factor is a cytokine able to stimulate both myelopoiesis and hematopoietic stem cell mobilization, which has seen it used extensively in the clinic to aid hematopoietic recovery. It acts specifically via the homodimeric granulocyte colony-stimulating factor receptor (G-CSFR), which is principally expressed on the surface of myeloid and hematopoietic progenitor cells. A number of pathogenic mutations have now been identified in CSF3R, the gene encoding G-CSFR. These fall into distinct classes, each of which is associated with a particular spectrum of myeloid disorders, including malignancy. This review details the various CSF3R mutations, their mechanisms of action, and contribution to disease, as well as discussing the clinical implications of such mutations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the injured adult nervous system, re-establishment of growth-promoting molecular gradients is known to entice and guide nerve repair. However, incorporation of three-dimensional chemotactic gradients in nerve repair scaffolds, particularly in those with multi-luminal architectures, remains extremely challenging. We developed a method that establishes highly tunable three-dimensional molecular gradients in collagen-filled multi-luminal nerve guides by anchoring growth-factor releasing coiled polymeric fibers onto the walls of collagen-filled hydrogel microchannels. Differential pitch in the coiling of neurotrophin-eluting fibers generated sustained three-dimensional chemotactic gradients that appropriately induced the differentiation of Pheochromocytoma (PC12) cells into neural-like cells along an increasing concentration of nerve growth factor (NGF). Computer modeling estimated the stability of the molecular gradient within the luminal collagen, which we confirmed by observing the significant effects of neurotrophin gradients on axonal growth from dorsal root ganglia (DRG). Neurons growing in microchannels exposed to a NGF gradient showed a 60% increase in axonal length compared to those treated with a linear growth factor concentration. In addition, a two-fold increment in the linearity of axonal growth within the microchannels was observed and confirmed by a significant reduction in the turning angle ratios of individual axons. These data demonstrate the ability of growth factor-loaded polymeric coiled fibers to establish three-dimensional chemotactic gradients to promote and direct nerve regeneration in the nervous system and provides a unique platform for molecularly guided tissue repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acquired drug resistance (ADR) can be developed in colorectal cancer cells after 5-fluorouracil (5-FU) treatment and diminish the effectiveness of chemotherapy. In this work, acquired 5-FU resistance in the colorectal cancer cell line SW480 was obtained with the up-regulation of dihydropyrimidine dehydrogenase (DPYD) gene expression which can convert 5-FU to its inactive metabolite. To overcome ADR in colorectal cancer, hollow mesoporous silica nanoparticles (HMSNs) grafted with epidermal growth factor (EGF) were used as nanocarriers to deliver 5-FU to colorectal cancer cells with acquired drug resistance. The effect and mechanism of 5-FU loaded EGF grafted HMSNs (EGF-HMSNs-5-FU) in overcoming acquired drug resistance in SW480/ADR cells were studied. The EGF-HMSNs were demonstrated to be specifically internalized in EGFR overexpressed SW480/ADR cells via a receptor-mediated endocytosis and can escape from endo-lysosomes. The EGF-HMSNs-5-FU exhibited much higher cytotoxicity on SW480/ADR cells than HMSNs-5-FU and free 5-FU while the plain HMSNs did not show significant cytotoxicity. The mechanism of EGF-HMSNs-5-FU in overcoming drug resistance in SW480/ADR cells could be attributed to the specific internalization of EGF-HMSNs-5-FU in EGFR overexpressed cells which can lead to high intracellular drug accumulation and cause cell death through S phase arrest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The neurotrophic hypothesis of major depressive disorder (MDD) postulates that the pathology of this illness incorporates a down-regulation of neurotrophin signaling. Brain-derived neurotrophic factor (BDNF) is the most studied neurotrophic mediator regarding the neurobiology of MDD. Nevertheless, emerging evidence has implicated the multi-competent angiogenic and neurogenic molecule - vascular endothelial growth factor (VEGF) - in hippocampal neurogenesis and depression pathophysiology. OBJECTIVE: To compare peripheral levels of VEGF between individuals with MDD and healthy controls. METHODS: We performed a systematic review and meta-analysis of original studies measuring peripheral levels of VEGF in participants with MDD compared to healthy controls. We searched the Pubmed/MEDLINE, EMBASE and PsycInfo databases for studies published in any language through December 16th, 2014. RESULTS: Fourteen studies met eligibility criteria (N=1633). VEGF levels were significantly elevated in individuals with MDD when compared to healthy controls (Hedges's g=0.343; 95% CI: 0.146-0.540; P<0.01). Funnel plot inspection and the Egger's test did not provide evidence of publication bias. A significant degree of heterogeneity was observed (Q=38.355, df=13, P<0.001; I(2)=66.1%), which was explored through meta-regression and subgroup analyses. Overall methodological quality, sample for assay (plasma versus serum), as well as the matching of MDD and control samples for age and gender emerged as significant sources of heterogeneity. CONCLUSIONS: Taken together, extant data indicate that VEGF shows promise as a biomarker for MDD, and supports that this mediator may be involved in neuroplasticity mechanisms underlying the pathophysiology of MDD.