24 resultados para CELL DEATH


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nitric oxide is implicated in the pathogenesis of various neuropathologies characterized by oxidative stress. Although nitric oxide has been reported to be involved in the exacerbation of oxidative stress observed in several neuropathologies, existent data fail to provide a holistic description of how nitrergic pathobiology elicits neuronal injury. Here we provide a comprehensive description of mechanisms contributing to nitric oxide induced neuronal injury by global transcriptomic profiling. Microarray analyses were undertaken on RNA from murine primary cortical neurons treated with the nitric oxide generator DETA-NONOate (NOC-18, 0.5 mM) for 8–24 hrs. Biological pathway analysis focused upon 3672 gene probes which demonstrated at least a ±1.5-fold expression in a minimum of one out of three time-points and passed statistical analysis (one-way anova, P < 0.05). Numerous enriched processes potentially determining nitric oxide mediated neuronal injury were identified from the transcriptomic profile: cell death, developmental growth and survival, cell cycle, calcium ion homeostasis, endoplasmic reticulum stress, oxidative stress, mitochondrial homeostasis, ubiquitin-mediated proteolysis, and GSH and nitric oxide metabolism. Our detailed time-course study of nitric oxide induced neuronal injury allowed us to provide the first time a holistic description of the temporal sequence of cellular events contributing to nitrergic injury. These data form a foundation for the development of screening platforms and define targets for intervention in nitric oxide neuropathologies where nitric oxide mediated injury is causative.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aims/hypothesis In type 2 diabetes, aggregation of islet amyloid polypeptide (IAPP) into amyloid is associated with beta cell loss. As IAPP is co-secreted with insulin, we hypothesised that IAPP secretion is necessary for amyloid formation and that treatments that increase insulin (and IAPP) secretion would thereby increase amyloid formation and toxicity. We also hypothesised that the unique properties of the glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 to maintain or increase beta cell mass would offset the amyloid-induced toxicity.

Methods Islets from amyloid-forming human IAPP transgenic and control non-transgenic mice were cultured for 48 h in 16.7 mmol/l glucose alone (control) or with exendin-4, potassium chloride (KCl), diazoxide or somatostatin. Human IAPP and insulin release, amyloid deposition, beta cell area/islet area, apoptosis and AKT phosphorylation levels were determined.

Results In control human IAPP transgenic islets, amyloid formation was associated with increased beta cell apoptosis and beta cell loss. Increasing human IAPP release with exendin-4 or KCl increased amyloid deposition. However, while KCl further increased beta cell apoptosis and beta cell loss, exendin-4 did not. Conversely, decreasing human IAPP release with diazoxide or somatostatin limited amyloid formation and its toxic effects. Treatment with exendin-4 was associated with an increase in AKT phosphorylation compared with control and KCl-treated islets.

Conclusions/interpretation IAPP release is necessary for islet amyloid formation and its toxic effects. Thus, use of insulin secretagogues to treat type 2 diabetes may result in increased islet amyloidogenesis and beta cell death. However, the AKT-associated anti-apoptotic effects of GLP-1 receptor agonists such as exendin-4 may limit the toxic effects of increased islet amyloid.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Excitotoxicity resulting from overstimulation of glutamate receptors is a major cause of neuronal death in cerebral ischemic stroke. The overstimulated ionotropic glutamate receptors exert their neurotoxic effects in part by overactivation of calpains, which induce neuronal death by catalyzing limited proteolysis of specific cellular proteins. Here, we report that in cultured cortical neurons and in vivo in a rat model of focal ischemic stroke, the tyrosine kinase Src is cleaved by calpains at a site in the N-terminal unique domain. This generates a truncated Src fragment of ?52 kDa, which we localized predominantly to the cytosol. A cell membrane-permeable fusion peptide derived from the unique domain of Src prevents calpain from cleaving Src in neurons and protects against excitotoxic neuronal death. To explore the role of the truncated Src fragment in neuronal death, we expressed a recombinant truncated Src fragment in cultured neurons and examined how it affects neuronal survival. Expression of this fragment, which lacks the myristoylation motif and unique domain, was sufficient to induce neuronal death. Furthermore, inactivation of the prosurvival kinase Akt is a key step in its neurotoxic signaling pathway. Because Src maintains neuronal survival, our results implicate calpain cleavage as a molecular switch converting Src from a promoter of cell survival to a mediator of neuronal death in excitotoxicity. Besides unveiling a new pathological action of Src, our discovery of the neurotoxic action of the truncated Src fragment suggests new therapeutic strategies with the potential to minimize brain damage in ischemic stroke.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tumors are heterogeneous masses of cells characterized pathologically by their size and spread. Their chaotic biology makes treatment of malignancies hard to generalize. We present a robust and reproducible glass microfluidic system, for the maintenance and “interrogation” of head and neck squamous cell carcinoma (HNSCC) tumor biopsies, which enables continuous media perfusion and waste removal, recreating in vivo laminar flow and diffusion-driven conditions. Primary HNSCC or metastatic lymph samples were subsequently treated with 5-fluorouracil and cisplatin, alone and in combination, and were monitored for viability and apoptotic biomarker release ‘off-chip’ over 7 days. The concentration of lactate dehydrogenase was initially high but rapidly dropped to minimally detectable levels in all tumor samples; conversely, effluent concentration of WST-1 (cell proliferation) increased over 7 days: both factors demonstrating cell viability. Addition of cell lysis reagent resulted in increased cell death and reduction in cell proliferation. An apoptotic biomarker, cytochrome c, was analyzed and all the treated samples showed higher levels than the control, with the combination therapy showing the greatest effect. Hematoxylin- and Eosin-stained sections from the biopsy, before and after maintenance, demonstrated the preservation of tissue architecture. This device offers a novel method of studying the tumor environment, and offers a pre-clinical model for creating personalized treatment regimens.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Early identification of tumor responses to treatment is crucial for devising more effective and safer cancer treatments. No widely applicable, noninvasive method currently exists for specifically detecting tumor cell death after cytotoxic treatment and thus for predicting treatment outcomes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

CONTEXT: Euphorbia hirta L. (Euphorbiaceae) has been used as a folk remedy in Southeast Asia for the treatment of various ailments. OBJECTIVE: The current study evaluates the cytotoxicity, cell-cycle arrest, and apoptotic induction by E. hirta in MCF-7 breast cancer cells. MATERIALS AND METHODS: Cytotoxic activity of methanol extract of whole part of E. hirta was determined by the MTT assay at various concentrations ranging from 1.96 to 250.00 µg/mL in MCF-7 cells. Cell morphology was assessed by light and fluorescence microscopy. Apoptosis and cell-cycle distribution were determined by annexin V staining and flow cytometry. DNA fragmentation, caspase activity, and reactive oxygen species (ROS) assays were performed using the commercially available kits. To identify the cytotoxic fraction, E. hirta extract was subjected to bioassay-guided fractionation. RESULTS: Euphorbia hirta exhibited significant inhibition of the survival of MCF-7 cells and the half inhibitory concentration (IC50) values was 25.26 µg/mL at 24 h. Microscopic studies showed that E. hirta-treated cells exhibited marked morphological features characteristic of apoptosis. Euphorbia hirta extract also had an ignorable influence on the LDH leakage and generating intracellular ROS. The flow cytometry study confirmed that E. hirta extract induced apoptosis in MCF-7 cells. Euphorbia hirta also resulted in DNA fragmentation in MCF-7 cells. Moreover, E. hirta treatment resulted in the accumulation of cells at the S and G2/M phases as well as apoptosis. The caspase activity study revealed that E. hirta extract induced apoptosis through the caspase-3-independent pathway by the activation of caspase-2, 6, 8, and 9. Euphorbia hirta hexane fraction, namely HFsub4 fraction, demonstrated highest activity among all the fractions tested with an IC50 value of 10.01 µg/mL at 24 h. DISCUSSION AND CONCLUSION: This study revealed that E. hirta induced apoptotic cell death and suggests that E. hirta could be used as an apoptosis-inducing anticancer agent for breast cancer treatment with further detailed studies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Synthesis and spectroscopic properties of seven new dibutyltin(IV) compounds of 2-{(E)-4-hydroxy-3-[(E)-4-(aryl)iminomethyl]phenyldiazenyl}benzoic acids (L(n)HH'; n=2-8) with general formula {[Bu2Sn(L(n)H)]2O}2 (1-7) are reported. The compounds were characterized by elemental analysis and by UV-Visible, fluorescence, IR, (1)H, (13)C and (119)Sn NMR spectroscopies. Solid state structures of dibutyltin(IV) compounds 1-3, 6 and 7 were accomplished from single crystal X-ray crystallography which reveal the common ladder-type structure with two endo- and two exo-Sn atoms. The redox properties of L(n)HH' (n=2-4, 7 and 8) and their diorganotin(IV) compounds 1-3, 6 and 7 were also investigated by cyclic voltammetry. In general, the dibutyltin(IV) derivatives exhibited significant in vitro cytotoxic potency towards A375 (melanoma) and HCT116 (colon carcinoma) cell lines as determined by several experiments, like Live and Dead assay, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell viability assay, LDH (lactate dehydrogenase), cleavage of caspases and PARP (poly(ADP-ribose)polymerase), and DNA fragmentation. Dibutyltin(IV) compounds increase cell death without cytolysis and decreases membrane fluidity, without interfering with p53. Among the dibutyltin(IV) compounds, compound 6 was found to be the most potent, with an IC50 value of 78nM. A mechanism of action for tumor cell death is proposed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

NDRG2 is a gene in skeletal muscle. My PhD thesis determined that increased levels of NDRG2 promoted the growth of muscle cells and also protected against cell death. This research contributed to the understanding of NDRG2 in the hope that in future this knowledge can help combat muscle diseases.