58 resultados para Aquaculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Describes the development and mapping of molecular markers in the blacklip and greenlip abalones. By means of a genome scan using a novel selective DNA pooling strategy, markers associated with growth were discovered that could potentially be applied to increase genetic gain in abalone aquaculture, whilst minimising inbreeding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study focussed on three key suppliers of fingerlings and live fish in Asia. Grouper hatchery businesses are lucrative even at low survival rates. The findings indicate that farming practices across these countries are similar. Most farmers adopt traditional practices and lack incentives to reduce cost, but remain proce focussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigated three strains of the common freshwater crayfish (yabby), to determine the potential for genetic improvement of this species for aquaculture. Crossbreeding generated viable progeny and differences were found between strains in reproductive performance, sex ratios, morphology and overall genetic divergence measured by DNA sequencing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hunger and malnutrition remain among the most devastating problems facing the world’s poor and needy, and continue to dominate the health and well-being of the world’s poorest nations. Moreover, there are growing doubts as to the long-term sustainability of many existing food production systems, including capture fisheries and aquaculture, to meet the future increasing global demands.Of the different agricultural food production systems, aquaculture (the farming of aquatic animals and plants) is widely viewed as an important weapon in the global fight against malnutrition and poverty, particularly within developing countries where over 93% of global production is currently produced, providing in most instances an affordable and a much needed source of high quality animal protein, lipids, and other essential nutrients. The current article compares for the first time the development and growth of the aquaculture sector and capture fisheries by analyzing production by mean trophic level. Whereas marine capture fisheries have been feeding the world on high trophic level carnivorous fish species since mankind has been fishing the oceans, aquaculture production within developing countries has focused, by and large, on the production of lower trophic level species. However, like capture fisheries, aquaculture focus within economically developed countries has been essentially on the culture of high value-, high trophic level-carnivorous species. The long term sustainability of these production systems is questionable unless the industry can reduce its dependence upon capture fisheries for sourcing raw materials for feed formulation and seed inputs. In line with above, the article calls for the urgent need for all countries to adopt and adhere to the principles and guidelines for responsible aquaculture of the FAO Code of Conduct for Responsible Fisheries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global and Asian aquaculture have witnessed a ten-fold increase in production from 1980 to 2004. However, the relative percent contribution to production of each of the major commodities has remained almost unchanged. For example, the contribution of freshwater finfish has declined from 71 to 66 percent in Asia but has remained unchanged globally over the last 20 to 30 years. This fact has dictated trends in the use of fish as a feed for cultured stocks. The growth in the sector has gone hand in hand with an increasing dependence on fish as feed, either directly or indirectly. In a number of countries in the Asia-Pacific region, the aquaculture sector has surpassed the capture fisheries sector in its respective contributions to the gross domestic product (GDP). Aquaculture’s increased contribution to national GDPs can be taken as a clear indication of the contribution of the sector to food security and poverty alleviation. The use of finfish and other aquatic organisms as a feed source can be through direct utilization of whole or chopped raw fish in wet form, through fishmeal and fish oil in formulated feeds, and/or as live fish, although the latter is uncommon and the overall amounts used are relatively small. In the first two categories, the fish used are often termed “trash fish/low-value fish”. Although attempts have been made to define this term, all definitions have a certain degree of ambiguity and/or subjectivity. In this regional review, the amount of fish used as feed sources based on the above categories was estimated primarily from the production data, supported by assumptions on the inclusion levels of fishmeal in formulated feeds and observed feed conversion efficiencies for both formulated feeds and for stock fed trash fish/low-value fish directly. A scenario for the use of fish as feed was developed by starting from the levels of aquaculture production recorded in 2004 and assuming increases in production volumes of 10, 15 and 20 percent by 2010, respectively, for the three trajectories. In parallel, the pattern of wild fish use as feed was projected to change as fish and shrimp farmers increasingly replace farmmade feeds by incorporating trash fish/low-value fish with manufactured feeds that include fishmeal. Also, the fishmeal inclusion rates in manufactured feeds are falling slowly, and this has been incorporated into the projections. The regional review also deals with the production of fishmeal using trash fish/low-value fish in the Asia-Pacific region. Regional fishmeal production as a whole is relatively low when compared with that of major fishmeal-producing countries such as Chile, Iceland and Norway, amounting to approximately 1 million tonnes per year. However, there is a trend towards increasing the use of fish industry waste, such as from the tuna canning industry in Thailand. The fishmeal produced in the region is priced considerably lower than globally traded fishmeal, but its quality is poorer. Total fishmeal use in Asian aquaculture in 2004 was estimated as 2 388 million tonnes, the highest proportion of this being used for crustacean aquaculture (1 418 million tonnes). Based on growth predictions (to year 2010) in the sector and improvements to feed quality and management, it is expected that the quantity of fishmeal used in Asian aquaculture will be slightly less than at present. An estimated 240 000 tonnes of fish oil is used in Asian aquaculture, principally in shrimp feeds. Based on production estimates of commodities in 2004 that rely on trash fish/low-value fish as the main feed source, this regional review suggests that Asian aquaculture currently uses between 2 465 and 3 882 million tonnes, an amount that is predicted to decrease to between 1.890 and 2 795 million tonnes by 2010. The use of trash fish/low-value fish and fishmeal by the aquaculture sector has been repeatedly adjudicated as a non-sustainable practice, and globally the sector is seeking to reduce its dependence on fish as feed through improved feed management practices and development of better quality feeds and feed formulations using alternative ingredients. Over the next few years, decreases in the use of trash fish/low-value fish are also expected to be achieved through better conversion of raw materials into fishmeal and fish oil during the reduction processes. The “way forward” in addressing the issue of the use of fish as feed in aquaculture in the Asia-Pacific region includes the need for a concerted regional research thrust to reduce the use of fish as feed sources in aquaculture, as has been achieved in the animal husbandry sector. Secondly, there is a need to increase farmer awareness on the use of trash fish as feed. This is achievable, considering the similar progress that has been made by the region’s shrimp farming sector, which almost exclusively involves small-scale practitioners who are often clustered in a given locality. The analysis also suggests that the use of trash fish/low-value fish in aquaculture may be compatible with improving food security and alleviating poverty. In Asia, trash fish/low-value fish is mostly landed in areas where there are other suitable fish commodities for human consumption. To make the trash fish/low-value fish suitable and available for human consumption would involve some degree of value-adding and transportation costs, which are likely to increase the price to beyond the means of the consumer, particularly in remote rural areas. Under such a scenario, the direct or indirect use of this perishable resource as a feed source to produce a consumable commodity appears to make economic sense and appears to be the most logical use for overall human benefit. In this manner, trash fish/low-value fish contributes to food security by increasing income generation opportunities and hence contributes to poverty alleviation. Another factor that needs to be taken into account is the large numbers of artisanal fishers who harvest this raw material. The continued use of trash fish/low-value fish, therefore, allows these fishers to maintain their livelihoods1. Admittedly, this is an area that warrants more detailed investigation, from resource use, livelihoods and economic viewpoints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of fish oils by aquaculture is the key impediment on the future growth and sustainability of the industry. Fish oil, the key provider of health-beneficial omega-3 long-chain polyunsaturated fatty acids, fluctuates drastically in supply and cost, and is extracted unsustainably from world oceans. Resultantly, its persistent use has fueled a heated global debate and sparked a generation of research focus into possible means of reducing the aquaculture industry's dependence on this resource. This chapter introduces the subject of fish oil usage in aquaculture on a global basis, and briefly traces the history of related issues. Accordingly, the major fish species utilized for fish meal and fish oil production are traced and the chemical and nutritional characteristics of fish oils of different origins are provided. The future expected availability of fish oil for aquaculture and the sustainability of the reduction industry are subsequently discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recommendations to endorse the sustainability of wild fish stock utilisation, supporting the health of marine ecosystems, are clashing with those to increase omega-3 fatty acids (n−3 LC-PUFA) consumption and promoting human health.

The objective of this study was to evaluate the role of salmonid aquaculture as a user or supplier of n−3 LC-PUFA, as a means of understanding the potential of the sector in conserving or depleting wild fisheries. A case-study feeding trial was implemented on rainbow trout up to commercial size, in which fish were fed a fish oil- or a linseed oil-diet. Harvested fish were analysed for fatty acid composition and difference and liking using consumers. The n−3 LC-PUFA input/n−3 LC-PUFA output ratio was computed. Consumers showed no preference, but were able to distinguish between samples. The fatty acids of the fillets were significantly modified by the diets. On the input side, for the production of 100 g of fish fillet, it was necessary to use 8.6 g of n−3 LC-PUFA to produce an output of 1.9 g of n−3 LC-PUFA in the fish oil-fed fish; in contrast it was only necessary to use 270 mg of n−3 LC-PUFA to produce 560 mg of these fatty acids in the linseed oil-fed fish. It was showed that the substitution of fish oil with linseed oil in aquafeed is an easily implemented tool to transform salmonids farming from a consumer into a net producer of health promoting n−3 LC-PUFA and accomplish its role in conserving wild fisheries in the future.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge in the field of environmental health is growing rapidly. Within the context of external factors that define its boundaries, environmental health has evolved over time into a complex, multidisciplinary and ill-defined field with uncertain solutions. Many of the key determinants and solutions to environmental health lie outside the direct realm of health and are strongly dependent on environmental changes, water and sanitation, industrial development, education, employment, trade, tourism, agriculture, urbanization, energy, housing and national security. Environmental risks, vulnerability and variability manifest themselves in different ways and at different time scales. While there are shared global and transnational problems, each community, country or region faces its own unique environmental health problems, the solution of which depends on circumstances surrounding the resources, customs, institutions, values and environmental vulnerability. This work will contain critical reviews and assessments of environmental health practices and research that have worked in places and thus can guide programs and economic development in other countries or regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nutrient discharge into coastal areas, such as the Great Barrier Reef can result in the degradation of coastal ecosystems. For example, excess nitrogen and phosphorus can damage corals through inducing algal bloom and subsequent shading. Excessive phosphorus can further weaken coral skeletons making them susceptible to damage. Land based industries such as aquaculture can contribute to such problems. This study set out to develop a system whereby water from aquaculture can be constantly reused resulting in minimized waste discharge. A three-stage filtration system utilizing floating media and activated carbon was designed to harness bacterial processes that could reduce both particulate and dissolved compounds to the extent whereby approximately 100% reuse of the wastewater became possible. This involved efficient and effective particulate and biological removal mechanisms in both aerobic and anaerobic zones of the filtration system. This design reduced dissolved nitrogen levels by up to 70% and maintained low phosphorus levels, which allowed the reuse of water for the successful culture of barramundi with a survival rate of 97% over 25 days. This pilot scale study demonstrated the potential of reusing aquaculture wastewater from the viewpoint of reducing nutrient input into coastal environments. Future research will refine these processes and assess the performance of the system at several commercial scale applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Filtration is an effective process in removing particles of various nature and sizes that are present in water and wastewater. It has been used as a final clarifying step in water treatment since the19th century. It is becoming increasingly important in the tertiary treatment step of wastewater to produce effluent of superior quality for the purpose of reuse. Filtration is particularly applied when high flow rates of water with relatively low contents of suspended solids have to be treated. In a conventional water or wastewater treatment system, the filters are usually placed after sedimentation units to remove suspended particles, which escape without settling in the sedimentation units. When chemically pretreated and flocculated water is applied to a filter without a prior-solid liquid separation it is called direct filtration.