62 resultados para 110903 Central Nervous System


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inhibitory neurons exert control the expression of many aspects of behaviour by regulating the effectiveness of excitatory neural function. By comparison with excitatory neural systems, relatively little is known about the development of inhibitory neurons and the influence which these neurons exert on the development of other neural systems. Two issues which relate to the development of inhibitory neurons are of particular interest. First, a paradox arises when inhibitory neurons are considered in terms of modern models of synaptic development which involve activity-dependent mechanisms of synaptic plasticity. Second, there is some evidence that inhibitory neurotransmitters may act in a special trophic manner during the early development of nervous systems. Investigations of these issues would be greatly facilitated in a neural system in which it was possible to experimentally control aspects of the development of individual pre- and postsynaptic cells. The aim of the results presented in this thesis was to characterise the normal development of one such system: the GABAergic inhibitory system of the Australian freshwater crayfish, Cherax destructor. The ontogeny of the inhibitory neurotransmitter GABA across the embryonic period of 30% to 100% development was investigated using immunohistochemical techniques. GABA-like immunoreactive cells and fibres were first detected in the embryonic brain region. The expression of GABA-like immunoreactivity progressed along a rostro-caudal gradient, with GABA-like immunoreactive cells being detected in the most anterior thoracic ganglia at 45% development and in all ganglia by 65% development. GABA-like immunoreactive fibres were evident in peripheral nerves as early as 55% development and ramified extensively throughout the neuropil of the nervous system by 65% development. By contrast, immunoreactivity to the primary excitatory neurotransmitter, glutamate, was not detected until 60-65% development. Glutamate-like immunoreactivity at 60-65% development was evident only in the form of punctate staining in the midline of the ventral nerve cord. Cell body staining was observed only at 90% development and was restricted to only a few cells on the periphery of the ventral nerve cord. Radio-labelled ligand binding methods and autoradiography were used to study the expression of putative GABA receptors in the Cherax embryos from 30% to 100% development. Specific binding was evident in the earliest embryos studies at 30% development. There was an initial increase in binding from 30% to 40% development, followed by a dramatic drop to almost zero binding at 50-55% development. This was followed by a gradual increase in binding levels with age, reaching a plateau at 85% development. Preliminary pharmacological evaluation of binding indicated that at least three GABA receptor types were expressed during embryonic development. Methods for culturing, dissociated neural tissues explanted form Cherax embryos at 85% development were established. The success of cultures was demonstrated by neurite extension, and neuronal networks in which neurons appeared to form connections with other neurons and with explanted muscle cells after two days in culture. Immunohistochemical studies demonstrated that some explanted neurons expressed GABA-like immunoreactivity within two days of explanting. These studies have provided a comprehensive description of the development of GABAergic neurons and their receptors in Cherax destructor embryos. The very early expression of GABA-like immunoreactivity, coupled with the early onset of specific GABA binding, strongly indicates that the GABAergic neurons are functional and able to exert an effect on other cells during much of the period of nervous system development in crayfish embryos. These results support the hypothesis that inhibitory neurons may play an important role as regulators of the overall process of assembly and maturation of the nervous system and provide a substantial basis for future experimental studies in which the specific action of inhibitory neurons on the development of discrete components of the crayfish nervous system may be investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical stressors such as infection, inflammation and tissue injury elicit activation of the hypofhalamic-pituitary-adrenal (HPA) axis. This response has significant implications for both immune and central nervous system function. Investigations in rats into the neural substrates responsible for HPA axis activation to an immune challenge have predominantly utilized an experimental paradigm involving the acute administration of the pro-inflammatory cytokine interleukin-1 β (IL-1β). It is well recognized that medial parvocellular corticotrophin-releasing factor cells of the paraventricular nucleus (mPVN CRF) are critical in generating HPA axis responses to an immune challenge but little is known about how peripheral immune signals can activate and/or modulate the mPVN CRF cells. Studies that have examined the afferent control of the mPVN CRF cell response to systemic IL-1β have centred largely on the inputs from brainstem catecholamine cells. However, other regulatory neuronal populations also merit attention and one such region is a component of the limbic system, the central nucleus of the amygdala (CeA). A large number of CeA cells are recruited following systemic IL-lβ administration and there is a significant body of work indicating that the CeA can influence HPA axis function. However, the contribution of the CeA to HPA axis responses to an immune challenge is only just beginning to be addressed. This review examines three aspects of HPA axis control by systemic IL-lβ; (i) whether the CeA has a role in generating HPA axis responses to systemic IL-1 β, (ii) the identity of the neural connections between the CeA and mPVN CRF cells that might be important to HPA axis responses and (iii) the mechanisms by which systemic IL-lβ triggers the recruitment of CeA cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined if brain pathways in morphine-dependent rats are activated by opioid withdrawal precipitated outside the central nervous system. Withdrawal precipitated with a peripherally acting quaternary opioid antagonist (naloxone methiodide) increased Fos expression but caused a more restricted pattern of neuronal activation than systemic withdrawal (precipitated with naloxone which enters the brain). There was no effect on locus coeruleus and significantly smaller increases in Fos neurons were produced in most other areas. However in the ventrolateral medulla (A1/C1 catecholamine neurons), nucleus of the solitary tract (A2/C2 catecholamine neurons), lateral parabrachial nucleus, supramamillary nucleus, bed nucleus of the stria terminalis, accumbens core and medial prefrontal cortex no differences in the withdrawal treatments were detected. We have shown that peripheral opioid withdrawal can affect central nervous system pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current project shows that the sulfatide-containing nanoliposome (SCL) drug delivery system could be an effective and safe nanocarrier for the anticancer agent doxorubicin to target tumours with high expression of tenascin-C. Moreover, SCL encapsulation could be a new strategy for the treatment of diseases in the central nervous system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genesis of severe fatigue and disability in people following acute pathogen invasion involves the activation of Toll-like receptors followed by the upregulation of proinflammatory cytokines and the activation of microglia and astrocytes. Many patients suffering from neuroinflammatory and autoimmune diseases, such as multiple sclerosis, Parkinson's disease and systemic lupus erythematosus, also commonly suffer from severe disabling fatigue. Such patients also present with chronic peripheral immune activation and systemic inflammation in the guise of elevated proinflammtory cytokines, oxidative stress and activated Toll-like receptors. This is also true of many patients presenting with severe, apparently idiopathic, fatigue accompanied by profound levels of physical and cognitive disability often afforded the non-specific diagnosis of chronic fatigue syndrome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The origins and actions of gaseous signaling molecules, nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H(2)S) in the mammalian cardiovascular system have received considerable attention and it is evident that these three "gasotransmitters" perform a variety of homeostatic functions. The origins, actions and disposition of these gasotransmitters in the piscine vasculature are far from resolved. In most fish examined to date, NO or NO donors are generally in vitro and in vivo vasodilators acting via soluble guanylyl cyclase, although there is evidence for NO-mediated vasoconstriction. Injection of sodium nitroprusside into trout causes hypotension that is attributed to a reduction in systemic resistance. Unlike mammals, NO does not appear to have an endothelial origin in fish blood vessels as an endothelial NO synthase has not identified. However, neural NO synthase is prevalent in perivascular nerves and is the most likely source of NO for cardiovascular control in fish. CO is a vasodilator in lamprey and trout vessels, and it, like NO, appears to exert its action, at least in part, via guanylyl cyclase and potassium channel activation. Inhibition of CO production increases resting tone in trout vessels suggestive of tonic CO activity, but little else is known about the origin or control of CO in the fish vasculature. H(2)S is synthesized by fish vessels and its constrictory, dilatory, or even multi-phasic actions, are both species- and vessel-specific. A small component of H(2)S-mediated basal activity may be endothelial in origin, but to a large extent H(2)S affects vascular smooth muscle directly and the mechanisms are unclear. H(2)S injected into the dorsal aorta of unanesthetized trout often produces oscillations in arterial blood pressure suggestive of H(2)S activity in the central nervous system as well as peripheral vasculature. Collectively, these studies hint at significant involvement of the gasotransmitters in piscine cardiovascular function and hopefully provide a variety of avenues for future research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heart rate asymmetry (HRA) is a disproportionate distribution of heart rate signal. The current study was designed to assess the changes in HRA in experimental conditions using Poincaré plot during parasympathetic blockade (atropine infusion) and parasympathetic enhancement (scopolamine administration). After atropine infusion, the heart rate variability in 5 out of 8 subjects was found asymmetric. In contrast, all 8 subjects were found to be asymmetric during scopolamine administration. The physiological relevance of HRA was demonstrated by showing correlation with standard frequency domain parameters during all phases of the experiment. The deviation of asymmetry index (GI ( p )) from symmetric range was further analyzed, which was maximum during scopolamine administration and minimum during atropine infusion. These findings suggest that parasympathetic block reduces the prevalence of HRA, and has significant correlation of GI ( p ) with frequency domain features of HRV analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dopamine D2 receptors (DRD2) in the central nervous system are involved in the regulation of feeding. It remains to be elucidated if mutations in the DRD2 gene contribute to the development of obesity. The aim of the present study was to investigate whether the Taq IA and Ser311Cys polymorphisms in the DRD2 gene are associated with obesity in Nauruan and Australian subjects. Subjects were selected based on extremes of the body mass index (BMI) distribution. Two groups of Australian women were selected. The leanest group had a mean BMI of 22.5 kg/m2 (range: 20.3-24.3) and the heaviest group had a mean of 36.1 kg/m2 (32.5-44.1). Four groups of Nauruan subjects were selected. Leanest men had a mean BMI of 33.0 kg/m2 (28.4-36.9), heaviest men had a mean of 52.8 kg/m2 (46.5-69.2), leanest women had a mean of 34.8 kg/m2 (28.2-41.8) and heaviest women had a mean of 55.1 kg/m2 (49.3-73.8). Subjects were genotyped for the Taq IA and Ser311Cys polymorphisms using polymerase chain reaction (PCR) restriction fragment length polymorphism analysis and allelic discrimination TaqmanTM PCR respectively. Leanest and heaviest groups were examined for differences in genotype frequency. Taq IA and Ser311Cys genotype frequencies did not differ significantly between leanest and heaviest Nauruan groups, or between leanest and heaviest Australians. Haplotype frequencies of these polymorphisms did not differ between leanest and heaviest groups. The Taq IA and Ser311Cys polymorphisms in the DRD2 gene are unlikely to be common causes of obesity in these populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is now understood that a combination of molluscan reproductive peptides are commonly cleaved from a large preprohormone and influence different aspects of spawning behavior. One type of reproductive peptide, known in Lymnaea stagnalis as [alpha]-CDCP, and in Aplysia californica as [alpha]-BCP, acts in egg laying via temperature-dependent autoinhibition or autoexcitation of neuronal cells. In our study, the expression of [alpha]-CDCP-like peptide in the blacklip abalone, Haliotis rubra, was identified by Western blots and immunocytochemistry, using an antiserum developed against [alpha]-CDCP. Western blots of total protein isolated from the central nervous system, cerebral and pleuropedal ganglia, as well as gonad and heptopancreas tissues of sexually mature adults, identified a protein of approximately 100 kDa as well as a range of smaller reactive peptides. This finding suggests that a reproductive [alpha]-peptide is probably synthesized from a single larger precursor protein. The larger peptides were also identified in Western blots of several abalone tissues, lmmunocytochemistry using the same antiserum showed the presence of immunoreactive axons in all the tissues studied, indicating synthesis or transport of products. The function of the abalone [alpha]-CDCP-like peptide is yet to be determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is accumulating evidence that body and mind, or rather the physical and the non-physical, are intrinsically connected. The mechanisms through which reality therapy works on mind and body may be explained via positive dynamics in the central nervous system, the body's biochemistry and the human energy field. The purpose of this paper is to show the relationship between choice theory and the nature of the power centers in the human energy field. Understanding the drivers behind human behavior and facilitating the choice to think realistically and to make responsible choices assists wholeness and enhances the physical, mental and spiritual health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose. Glabridin is a major active constituent of Glycyrrhiza glabra which is commonly used in the treatment of cardiovascular and central nervous system (CNS) diseases. Recently, we have found that glabridin is a substrate of P-glycoprotein (PgP/MDR1). This study aimed to investigate the role of PgP in glabridin penetration across the blood–brain barrier (BBB) using several in vitro and in vivo models.
Materials and Methods. Cultured primary rat brain microvascular endothelial cells (RBMVECs) were used in the uptake, efflux and transcellular transport studies. A rat bilateral in situ brain perfusion model was used to investigate the brain distribution of glabridin. The brain and tissue distribution of glabridin in rats with or without coadministered verapamil or quinidine were examined with correction for the tissue residual blood. In addition, the brain distribution of glabridin in mdr1a(-/-) mice was compared with the wild-type mice. Glabridin in various biological matrices was determined by a validated liquid chromatography mass spectrometric method.
Results. The uptake and efflux of glabridin in cultured RBMVECs were ATP-dependent and significantly altered in the presence of a PgP or multi-drug resistance protein (Mrp1/2) inhibitor (e.g. verapamil or MK-571). A polarized transport of glabridin was found in RBMVEC monolayers with
facilitated efflux from the abluminal (BL) to luminal (AP) side. Addition of a PgP or Mrp1/2 inhibitor in both luminal and abluminal sides attenuated the polarized transport across RBMVECs. In a bilateral in situ brain perfusion model, the uptake of glabridin into the cerebrum increased from 0.42 T 0.09% at 1 min to 9.27 T 1.69% (ml/100 g tissue) at 30 min and was significantly greater than that for sucrose. Coperfusion of a PgP or Mrp1/2 inhibitor significantly increased the brain distribution of glabridin by 33.6j142.9%. The rat brain levels of glabridin were only about 27% of plasma levels when corrected by tissue residual blood and it was increased to up to 44% when verapamil or quinidine was coadministered. The area under the brain concentration-time curve (AUC) of glabridin in mdr1a(-/-) mice was 6.0-fold higher than the wild-type mice.
Conclusions. These findings indicate that PgP limits the brain penetration of glabridin through the BBB and PgP may cause drug resistance to glabridin (licorice) therapy for CNS diseases and potential drugglabridin interactions. However, further studies are needed to explore the role of other drug transporters (e.g. Mrp1-4) in restricting the brain penetration of glabridin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyunsaturated fatty acids (PUFA) are essential structural components of the central nervous system. Their role in controlling learning and memory has been well documented. A nutrigenomic approach with high-density microarrays was used to reveal brain gene-expression changes in response to different PUFA-enriched diets in rats. In aged rats fed throughout life with PUFA-enriched diets, genes with altered expressions included transthyretin, α-synuclein, and calmodulins, which play important roles in synaptic  plasticity and learning. The effect of perinatal omega-3 PUFA supply on gene expression later in life also was studied. Several genes showed similar changes in expression in rats fed omega-3-deficient diets in the perinatal period, regardless of whether they or their mothers were fed omega-3 PUFA-sufficient diets after giving birth. In this experiment, among the down-regulated genes were a kainate glutamate receptor and a DEAD-box polypeptide. Among the up-regulated genes were a chemokine-like factor, a tumor necrosis factor receptor, and cytochrome c. The possible involvement of the genes with altered expression attributable to different diets in different brain regions in young and aged rats and the possible mode of regulatory action of PUFA also are discussed. We conclude that PUFA-enriched diets lead to significant changes in expression of several genes in the central nervous tissue, and these effects appear to be mainly independent of their effects on membrane composition. The direct effects of PUFA on transcriptional modulators, the downstream developmentally and tissue-specifically activated elements might be one of the clues to understanding the beneficial effects of the omega-3 PUFA on the nervous system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: The aim of the present study was to examine neonatal symptoms previously reported to be associated with exposure to antidepressant medication in late pregnancy in a group of infants exposed to antidepressants, using a prospective and controlled design.

Method: A prospective case-control study recruited 27 pregnant women taking antidepressant medication and 27 matched controls who were not taking antidepressant medication in pregnancy. Of the 27 women taking medication, 25 remained on medication in the third trimester and, of these, 23 women had complete data available. In pregnancy and after delivery women were assessed with the Beck Depression Inventory-II and a purpose-designed questionnaire. After delivery mothers were asked a set of nine questions pertaining to symptoms of discontinuation in their newborn and questions about pregnancy and delivery complications.

Results: There was an increased risk of discontinuation symptoms in neonates exposed to antidepressant medication in late pregnancy and an association with higher dose medication. The study group were found to be significantly more likely to display behaviour such as crying, jitteriness, tremor, feeding, reflux and sneezing and sleep for <3 h after a feed. They also had significantly higher rates of jaundice and admissions to the special care nursery.

Conclusions: Exposure to antidepressants in late pregnancy is associated with a range of symptoms in the neonate that are consistent with the effects of exposure to antidepressants in late pregnancy. The clusters of symptoms most highly correlated are the gastrointestinal and central nervous system symptoms. These finding helps to identify the common symptoms associated with a neonatal serotonin discontinuation syndrome.