197 resultados para Microbiota


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel probiotics and prebiotics designed to manipulate the gut microbiota for improving health outcomes are in demand as the importance of the gut microbiota in human health is revealed. The regulations governing introduction of novel probiotics and prebiotics vary by geographical region. Novel foods and foods with health claims fall under specific regulations in several countries. The paper reviews the main requirements of the regulations in the EU, USA, Canada and Japan. We propose a number of areas that need to be addressed in any safety assessment of novel probiotics and prebiotics. These include publication of the genomic sequence, antibiotic resistance profiling, selection of appropriate in vivo model, toxicological studies (including toxin production) and definition of target population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alterations in the composition and metabolic activity of the gut microbiota appear to contribute to the development of obesity and associated metabolic diseases. However, the extent of this relationship remains unknown. Modulating the gut microbiota with non-digestible carbohydrates (NDC) may exert anti-obesogenic effects through various metabolic pathways including changes to appetite regulation, glucose and lipid metabolism and inflammation. The NDC vary in physicochemical structure and this may govern their physical properties and fermentation by specific gut bacterial populations. Much research in this area has focused on established prebiotics, especially fructans (i.e. inulin and fructo-oligosaccharides); however, there is increasing interest in the metabolic effects of other NDC, such as resistant dextrin. Data presented in this review provide evidence from mechanistic and intervention studies that certain fermentable NDC, including resistant dextrin, are able to modulate the gut microbiota and may alter metabolic process associated with obesity, including appetite regulation, energy and lipid metabolism and inflammation. To confirm these effects and elucidate the responsible mechanisms, further well-controlled human intervention studies are required to investigate the impact of NDC on the composition and function of the gut microbiota and at the same time determine concomitant effects on host metabolism and physiology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A three-stage continuous fermentative colonic model system was used to monitor in vitro the effect of different orange juice formulations on prebiotic activity. Three different juices with and without Bimuno, a GOS mixture containing galactooligosaccharides (B-GOS) were assessed in terms of their ability to induce a bifidogenic microbiota. The recipe development was based on incorporating 2.75g B-GOS into a 250 ml serving of juice (65°Brix of concentrate juice). Alongside the production of B-GOS juice, a control juice - orange juice without any additional Bimuno and a positive control juice, containing all the components of Bimuno (glucose, galactose and lactose) in the same relative proportions with the exception of B-GOS were developed. Ion Exchange Chromotography analysis was used to test the maintenance of bimuno components after the production process. Data showed that sterilisation had no significant effect on concentration of B-GOS and simple sugars. The three juice formulations were digested under conditions resembling the gastric and small intestinal environments. Main bacterial groups of the faecal microbiota were evaluated throughout the colonic model study using 16S rRNA-based fluorescence in situ hybridization (FISH). Potential effects of supplementation of the juices on microbial metabolism were studied measuring short chain fatty acids (SCFAs) using gas chromatography. Furthermore, B-GOS juices showed positive modulations of the microbiota composition and metabolic activity. In particular, numbers of faecal bifidobacteria and lactobacilli were significantly higher when B-GOS juice was fermented compared to controls. Furthermore, fermentation of B-GOS juice resulted in an increase in Roseburia subcluster and concomitantly increased butyrate production, which is of potential benefit to the host. In conclusion, this study has shown B-GOS within orange juice can have a beneficial effect on the fecal microbiota.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background: Advancing age is linked to a decrease in beneficial bacteria such as Bifidobacterium spp. and reduced aspects of innate immune function. Objectives: We investigated whether daily consumption of a probiotic [Bacillus coagulans GBI-30, 6086 (BC30); GanedenBC30] could improve immune function and gut function in men and women aged 65–80 y, using a double-blind, placebo-controlled crossover design. Method: Thirty-six volunteers were recruited and randomly assigned to receive either a placebo (microcrystalline cellulose) or the probiotic BC30 (1 3 109 colony-forming units/capsule). Volunteers consumed 1 treatment capsule per day for 28 d, followed by a 21-d washout period before switching to the other treatment. Blood and fecal samples were collected at the beginning and end of each treatment period. Fecal samples were used to enumerate bacterial groups and concentrations of calprotectin. Peripheral blood mononuclear cells (PBMCs) were extracted from whole blood to assess natural killer cell activity and lipopolysaccharide (LPS)-stimulated cytokine production. C-reactive protein concentrations were measured in plasma. Results: Consumption of BC30 significantly increased populations of Faecalibacterium prausnitzii by 0.1 log10 cells/mL more than during consumption of the placebo (P = 0.03), whereas populations of Bacillus spp. increased significantly by 0.5 log10 cells/mL from baseline in volunteers who consumed BC30 (P = 0.007). LPS-stimulated PBMCs showed a 0.2 ng/mL increase in the anti-inflammatory cytokine IL-10 28 d after consumption of BC30 (P < 0.05), whereas the placebo did not affect IL-10, and no overall difference was found in the effect of the treatments. Conclusions: Daily consumption of BC30 by adults aged 65–80 y can increase beneficial groups of bacteria in the human gut and potentially increase production of anti-inflammatory cytokines. This study shows the potential benefits of a probiotic to improve dysbiosis via modulation of the microbiota in older persons. J Nutr doi: 10.3945/jn.114.199802.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Probiotics and prebiotics are useful interventions for improving human health through direct or indirect effects on the colonizing microbiota. However, translation of these research findings into nutritional recommendations and public health policy endorsements has not been achieved in a manner consistent with the strength of the evidence. More progress has been made with clinical recommendations. Conclusions include that beneficial cultures, including probiotics and live cultures in fermented foods, can contribute towards the health of the general population; prebiotics, in part due to their function as a special type of soluble fiber, can contribute to the health of the general population; and a number of challenges must be addressed in order to fully realize probiotic and prebiotic benefits, including the need for greater awareness of the accumulated evidence on probiotics and prebiotics among policy makers, strategies to cope with regulatory roadblocks to research, and high-quality human trials that address outstanding research questions in the field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prebiotics, probiotics and synbiotics are dietary ingredients with the potential to influence health and mucosal and systemic immune function by altering the composition of the gut microbiota. In the present study, a candidate prebiotic (xylo-oligosaccharide, XOS, 8 g/d), probiotic (Bifidobacterium animalis subsp. lactis Bi-07, 109 colony-forming units (CFU)/d) or synbiotic (8 g XOS+109 CFU Bi-07/d) was given to healthy adults (25–65 years) for 21 d. The aim was to identify the effect of the supplements on bowel habits, self-reported mood, composition of the gut microbiota, blood lipid concentrations and immune function. XOS supplementation increased mean bowel movements per d (P= 0·009), but did not alter the symptoms of bloating, abdominal pain or flatulence or the incidence of any reported adverse events compared with maltodextrin supplementation. XOS supplementation significantly increased participant-reported vitality (P= 0·003) and happiness (P= 0·034). Lowest reported use of analgesics was observed during the XOS+Bi-07 supplementation period (P= 0·004). XOS supplementation significantly increased faecal bifidobacterial counts (P= 0·008) and fasting plasma HDL concentrations (P= 0·005). Bi-07 supplementation significantly increased faecal B. lactis content (P= 0·007), lowered lipopolysaccharide-stimulated IL-4 secretion in whole-blood cultures (P= 0·035) and salivary IgA content (P= 0·040) and increased IL-6 secretion (P= 0·009). XOS supplementation resulted in lower expression of CD16/56 on natural killer T cells (P= 0·027) and lower IL-10 secretion (P= 0·049), while XOS and Bi-07 supplementation reduced the expression of CD19 on B cells (XOS × Bi-07, P= 0·009). The present study demonstrates that XOS induce bifidogenesis, improve aspects of the plasma lipid profile and modulate the markers of immune function in healthy adults. The provision of XOS+Bi-07 as a synbiotic may confer further benefits due to the discrete effects of Bi-07 on the gut microbiota and markers of immune function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective The colonic microbiota ferment dietary fibres, producing short chain fatty acids. Recent evidence suggests that the short chain fatty acid propionate may play an important role in appetite regulation. We hypothesised that colonic delivery of propionate would increase peptide YY (PYY) and glucagon like peptide-1 (GLP-1) secretion in humans, and reduce energy intake and weight gain in overweight adults. Design To investigate whether propionate promotes PYY and GLP-1 secretion, a primary cultured human colonic cell model was developed. To deliver propionate specifically to the colon, we developed a novel inulin-propionate ester. An acute randomised, controlled cross-over study was used to assess the effects of this inulin-propionate ester on energy intake and plasma PYY and GLP-1 concentrations. The long-term effects of inulin-propionate ester on weight gain were subsequently assessed in a randomised, controlled 24-week study involving 60 overweight adults. Results Propionate significantly stimulated the release of PYY and GLP-1 from human colonic cells. Acute ingestion of 10 g inulin-propionate ester significantly increased postprandial plasma PYY and GLP-1 and reduced energy intake. Over 24 weeks, 10 g/day inulin-propionate ester supplementation significantly reduced weight gain, intra-abdominal adipose tissue distribution, intrahepatocellular lipid content and prevented the deterioration in insulin sensitivity observed in the inulin-control group. Conclusions These data demonstrate for the first time that increasing colonic propionate prevents weight gain in overweight adult humans

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The energy-salvaging capacity of the gut microbiota from dietary ingredients has been proposed as a contributing factor for the development of obesity. This knowledge generated interest in the use of non-digestible dietary ingredients such as prebiotics to manipulate host energy homeostasis. In the present study, the in vitro response of obese human faecal microbiota to novel oligosaccharides was investigated. Dextrans of various molecular weights and degrees of branching were fermented with the faecal microbiota of healthy obese adults in pH-controlled batch cultures. Changes in bacterial populations were monitored using fluorescent in situ hybridisation and SCFA concentrations were analysed by HPLC. The rate of gas production and total volume of gas produced were also determined. In general, the novel dextrans and inulin increased the counts of bifidobacteria. Some of the dextrans were able to alter the composition of the obese human microbiota by increasing the counts of Bacteroides–Prevotella and decreasing those of Faecalibacterium prausnitzii and Ruminococcus bromii/R. flavefaciens. Considerable increases in SCFA concentrations were observed in response to all substrates. Gas production rates were similar during the fermentation of all dextrans, but significantly lower than those during the fermentation of inulin. Lower total gas production and shorter time to attain maximal gas production were observed during the fermentation of the linear 1 kDa dextran than during the fermentation of the other dextrans. The efficacy of bifidobacteria to ferment dextrans relied on the molecular weight and not on the degree of branching. In conclusion, there are no differences in the profiles between the obese and lean human faecal fermentations of dextrans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intestinal bacteria carry out many fundamental roles, such as the fermentation of non-digestible dietary carbohydrates to produce short chain fatty acids (SCFAs), which can affect host energy levels and gut hormone regulation. Understanding how to manage this ecosystem to improve human health is an important but challenging goal. Antibiotics are the front line of defence against pathogens, but in turn they have adverse effects on indigenous microbial diversity and function. Here, we have investigated whether dietary supplementation—another method used to modulate gut composition and function—could be used to ameliorate the side effects of antibiotics. We perturbed gut bacterial communities with gentamicin and ampicillin in anaerobic batch cultures in vitro. Cultures were supplemented with either pectin (a non-fermentable fibre), inulin (a commonly used prebiotic that promotes the growth of beneficial bacteria) or neither. Although antibiotics often negated the beneficial effects of dietary supplementation, in some treatment combinations, notably ampicillin and inulin, dietary supplementation ameliorated the effects of antibiotics. There is therefore potential for using supplements to lessen the adverse effects of antibiotics. Further knowledge of such mechanisms could lead to better therapeutic manipulation of the human gut microbiota.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human gut is a complex ecosystem occupied by a diverse microbial community. Modulation of this microbiota impacts health and disease. The definitive way to investigate the impact of dietary intervention on the gut microbiota is a human trial. However, human trials are expensive and can be difficult to control; thus, initial screening is desirable. Utilization of a range of in vitro and in vivo models means that useful information can be gathered prior to the necessity for human intervention. This review discusses the benefits and limitations of these approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent advances in our understanding of the community structure and function of the human microbiome have implications for the potential role of probiotics and prebiotics in promoting human health. A group of experts recently met to review the latest advances in microbiota/microbiome research and discuss the implications for development of probiotics and prebiotics, primarily as they relate to effects mediated via the intestine. The goals of the meeting were to share recent advances in research on the microbiota, microbiome, probiotics, and prebiotics, and to discuss these findings in the contexts of regulatory barriers, evolving healthcare environments, and potential effects on a variety of health topics, including the development of obesity and diabetes; the long-term consequences of exposure to antibiotics early in life to the gastrointestinal (GI) microbiota; lactose intolerance; and the relationship between the GI microbiota and the central nervous system, with implications for depression, cognition, satiety, and mental health for people living in developed and developing countries. This report provides an overview of these discussions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To effectively prevent the onset and reduce mortality from noncommunicable diseases, we must consider every individual as metabolically unique to allow for a personalized management to take place. Diet and gut microbiota are major components of the exposome that interact together with a genetic make-up in a complex interplay to result in an individual’s metabolic phenotype. In this context, foodomics approaches (such as nutrigenetics, nutrimetabolomics, nutritranscriptomics, nutriproteomics and metagenomics) are essential tools to assess an individual’s optimal metabolic space. These have recently been applied to large human cohorts to identify specific gene-metabolite, diet-metabolite and gene–diet interactions. As the gut microbiota is a key player in metabolic homeostasis, we suggest following a holistic investigation of metagenome–hyperbolome–diet interactions, the findings of which will provide the basis for developing personalized nutrition and personalized functional foods. However, examining these three-way interactions will only be possible when the challenge of large datasets integration will be overcome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bioremediation strategies continue to be developed to mitigate the environmental impact of petroleum hydrocarbon contamination. This study investigated the ability of soil microbiota, adapted by prior exposure, to biodegrade petroleum. Soils from Barrow Is. (W. Australia), a class A nature reserve and home to Australia’s largest onshore oil field, were exposed to Barrow production oil (50 ml/kg soil) and incubated (25 °C) for successive phases of 61 and 100 days. Controls in which oil was not added at Phase I or II were concurrently studied and all treatments were amended with the same levels of additional nutrient and water to promote microbial activity. Prior exposure resulted in accelerated biodegradation of most, but not all, hydrocarbon constituents in the production oil. Molecular biodegradation parameters measured using gas chromatography–mass spectrometry (GC–MS) showed that several aromatic constituents were degraded more slowly with increased oil history. The unique structural response of the soil microbial community was reflected by the response of different phospholipid fatty acid (PLFA) sub-classes (e.g. branched saturated fatty acids of odd or even carbon number) measured using a ratio termed Barrow PLFA ratio (B-PLFAr). The corresponding values of a previously proposed hydrocarbon degrading alteration index showed a negative correlation with hydrocarbon exposure, highlighting the site specificity of PLFA-based ratios and microbial community dynamics. B-PLFAr values increased with each Phase I and II addition of production oil. The different hydrocarbon biodegradation rates and responses of PLFA subclasses to the Barrow production oil probably relate to the relative bioavailability of production oil hydrocarbons. These different effects suggest preferred structural and functional microbial responses to anticipated contaminants may potentially be engineered by controlled pre-exposure to the same or closely related substrates. The bioremediation of soils freshly contaminated with petroleum could benefit from the addition of exhaustively bioremediated soils rich in biota primed for the impacting hydrocarbons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is known that roots can respond to patches of fertility; however, root proliferation is often too slow to exploit resources fully, and organic nutrient patches may be broken down and leached, immobilized or chemically fixed before they are invaded by the root system. The ability of fungal hyphae to exploit resource patches is far greater than that of roots due to their innate physiological and morphological plasticity, which allows comprehensive exploration and rapid colonization of resource patches in soils. The fungal symbionts of ectomycorrhizal plants excrete significant quantities of enzymes such as chitinases, phosphatases and proteases. These might allow the organic residue to be tapped directly for nutrients such as N and P. Pot experiments conducted with nutrient-stressed ectomycorrhizal and control willow plants showed that when high quality organic nutrient patches were added, they were colonized rapidly by the ectomycorrhizal mycelium. These established willows (0.5 m tall) were colonized by Hebeloma syrjense P. Karst. for 1 year prior to nutrient patch addition. Within days after patch addition, colour changes in the leaves of the mycorrhizal plants (reflecting improved nutrition) were apparent, and after I month the concentration of N and P in the foliage of mycorrhizal plants was significantly greater than that in non-mycorrhizal plants subject to the same nutrient addition. It seems likely that the mycorrhizal plants were able to compete effectively with the wider soil microbiota and tap directly into the high quality organic resource patch via their extra-radical mycelium. We hypothesize that ectomycorrhizal plants may reclaim some of the N and P invested in seed production by direct recycling from failed seeds in the soil. The rapid exploitation of similar discrete, transient, high-quality nutrient patches may have led to underestimations when determining the nutritional benefits of ectomycorrhizal colonization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the accumulating knowledge on the development and establishment of the gut microbiota, its role as a reservoir for multidrug resistance is not well understood. This study investigated the prevalence and persistence patterns of an integrase gene (int1), used as a proxy for integrons (which often carry multiple antimicrobial resistance genes), in the fecal microbiota of 147 mothers and their children sampled longitudinally from birth to 2 years. The study showed the int1 gene was detected in 15% of the study population, and apparently more persistent than the microbial community structure itself. We found int1 to be persistent throughout the first two years of life, as well as between mothers and their 2-year-old children. Metagenome sequencing revealed integrons in the gut meta-mobilome that were associated with plasmids and multidrug resistance. In conclusion, the persistent nature of integrons in the infant gut microbiota makes it a potential reservoir of mobile multidrug resistance.