2 resultados para radiação UVB

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growth and production of anthocyanin, flavonoid and phenolic compounds were evaluated in Lollo Rosso lettuce 'Revolution' grown continuously under films varying in their ability to transmit LTV radiation (completely transparent to IN, transparent above 320, 350, 370 and 3 80 nm and completely opaque to LTV radiation). Plants were grown from seed under UV transparent and UV blocking films and destructively harvested 3-4 weeks after transplanting. Plants under a complete UV blocking film (UV400) produced up to 2.2 times more total above ground dry weight than plants under the UV transparent film. In contrast, anthocyanin content in plants under the UV blocking film was approximately eight times lower than in plants under a UV transparent film. Furthermore, there was a curvilinear relationship between the anthocyanin content and LTV wavelength cutoff such that above 370 run there was no further reduction in anthocyanin content. Fluorescence measurements indicated that photosynthetic performance index was 15% higher under the presence of UVB and UVA (UV280) than under the presence of UVA (UV320) and 53% higher than in the absence of UV radiation suggesting protection of the photosynthetic apparatus possibly by phenolic compounds. These findings are of particular importance as the potential of UV transmitting films to increase secondary compounds may offer the opportunity to produce plants commercially with increased health benefits compared to those grown under conventional films.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthetic pyrethroid insecticides are degraded almost entirely by ultraviolet (UV)-catalysed oxidation. A bioassay using the beetle Tribolium confusum duVal caged on bandages soaked in 0.04% a.i. cypermethrin showed large differences in residual insecticide-life under three plastic films available for cladding polytunnels. Cypermethrin exposed to a UV film that transmitted 70% of UVB and 80% of UVA killed all beetles for 8 weeks, compared to only 3 weeks for cypermethrin exposed in a clear plastic envelope. Cypermethrin under a UV-absorbing film that reduced the transmission of UVB and UVA to 14% and 50%, respectively, gave a complete kill for 17 weeks. Reducing the transmission of UVB to virtually zero, and that of UVA to only 3%, using a UV-opaque film prolonged the effective life of the cypermethrin residue to 26 weeks, and some beetles were still killed for a further 11 weeks. Even after this time, beetles exposed to cypermethrin from the UV-opaque treatment were still affected by the insecticide, and only showed near-normal mobility after 24 months of pesticide exposure to the UV-opaque film. These results have implications for the recommended intervals between cypermethrin treatment and crop harvest, and on the time of introduction of insect-based biological control agents, when UV-opaque films are used in commercial horticulture.