37 resultados para phosphate metabolism

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inositol levels, maintained by the biosynthetic enzyme inositol-3-phosphate synthase (Ino1), are altered in a range of disorders including bipolar disorder and Alzheimer's disease. To date, most inositol studies have focused on the molecular and cellular effects of inositol depletion without considering Ino1 levels. Here we employ a simple eukaryote, Dictyostelium, to demonstrate distinct effects of loss of Ino1 and inositol depletion. We show that loss of Ino1 results in inositol auxotrophy that can only be partially rescued by exogenous inositol. Removal of inositol supplementation from the ino1- mutant results in a rapid 56% reduction in inositol levels, triggering the induction of autophagy, reduced cytokinesis and substrate adhesion. Inositol depletion also caused a dramatic generalised decrease in phosphoinositide levels that was rescued by inositol supplementation. However, loss of Ino1 triggered broad metabolic changes consistent with the induction of a catabolic state that was not rescued by inositol supplementation. These data suggest a metabolic role for Ino1 independent of inositol biosynthesis. To characterise this role, an Ino1 binding partner containing SEL1L1 domains (Q54IX5) was identified with homology to mammalian macromolecular complex adaptor proteins. Our findings therefore identify a new role for Ino1, independent of inositol biosynthesis, with broad effects on cell metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Olsen method is an indicator of plant-available phosphorus (P). The effect of time and temperature on residual phosphate in soils was measured using the Olsen method in a pot experiment. Four soils were investigated: two from Pakistan and one each from England (calcareous) and Colombia (acidic). Two levels of residual phosphate were developed in each soil after addition of phosphate by incubation at either 10degreesC or 45degreesC. The amount of phosphate added was based on the P maximum of each soil, calculated using the Langmuir equation. Rvegrass was used as the test crop. The pooled data for the four soils incubated at 10degreesC showed good correlation between Olsen P and dry matter yield or P uptake (r(2) = 0.85 and 0.77, respectively), whereas at 45 degreesC, each soil had its own relationship and pooled data did not show correlation of Olsen P with dry matter yield or P uptake. When the data at both temperatures were pooled, Olsen P was a good indicator of yield and uptake for the English soil. For the Pakistani soils, Olsen P after 45 degreesC treatment was an underestimate relative to the 10 degreesC data and for the Colombian soil it was an overestimate. The reasons for these differences need to be explored further before high temperature incubation can be used to simulate long-term changes in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to examine the mechanisms by which gypsum increases the sorption of fertilizer-P in soils of and and semi-arid regions. Either gypsum or soil (Usher from the UK; pH 7.8, 7% organic matter, 21% CaCO3: Yasouj from Iran; pH 8.2, 1.4% OM, 18% CaCO3: Ghanimeh from Saudi Arabia; pH 7.8, 1% OM, 26% CaCO3, 13% gypsum) was shaken for 24 It with KH2PO4 solutions in 10 mM CaCl2. With gypsum, grinding increased sorption by a factor of about 3, and increase in pH from 5.6 to 7.5 greatly increased sorption. Scanning electron micrographs (SEM) and EDX quantitative analysis showed that small crystals of gypsum disappeared and roughly spherical particles of dicalcium phosphate (DCPD) were formed. Analysis of equilibrium Solutions showed, using GEOCHEM, that octa-calcium phosphate (OCP) coated the DCPD. For the soils, sorption was in the order Ghanimeh > Yasouj > Usher. Removal of gypsum from Ghanimeh reduced sorption, with precipitated gypsum having a greater effect than gypsum mixed physically with the soil. Addition to Usher had no effect. SEM and EDX could not be used in the soil matrix, but solubility analysis again showed that solutions were close to equilibrium with OCP. Usher was unresponsive to added gypsum, presumably because of its small sorption capacity and high organic matter content. In Ghanimeh and Yasouj soils, gypsum increased sorption by being a source of readily available Ca2+ (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adsorption of arsenic onto soil was investigated as a means of understanding arsenic-induced release of phosphate. In batch adsorption experiments As adsorption was accompanied by P desorption. At low As additions, the ratio As adsorbed: P desorbed remained constant. At higher As additions, P desorption reached a maximum while As adsorption continued to increase. The P desorption maximum coincided with an increase in pH. Barley plants were grown on soils spiked with arsenate (0-360 mg As kg(-1)) to investigate the effect on plant growth and P uptake. As arsenic concentration increased, above ground plant yield decreased and the plants showed symptoms typical of As toxicity and P deficiency. At low As additions to the soil, uptake of As and P by barley increased. At higher As additions P uptake decreased. It is argued that this was due to the change in As:P ratio in the soil solution. It is concluded that input of arsenic to the soil could mobilise phosphate. Crop yield is likely to be affected, either due to reduced phosphate availability at low arsenic additions or arsenic toxicity at higher additions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A laboratory incubation experiment was conducted to evaluate the soil factors that influence the dissolution of two phosphate rocks (PRs) of different reactivity (Gafsa, GPR, reactive PR; and Togo-Hahotoe, HPR, low reactivity PR) in seven agricultural soils from Cameroon having variable phosphorus (P)- sorption capacities, organic carbon (C) contents, and exchangeable acidities. Ground PR was mixed with the soils at a rate of 500 mg P kg 21 soil and incubated at 30 degrees C for 85 days. Dissolution of the PRs was determined at various intervals using the Delta NaOH-P method ( the difference of the amount of P extracted by 0.5 M NaOH between the PR-treated soils and the control). Between 4 and 27% of HPR and 33 and 50% of GPR were dissolved in the soils. Calcium (Ca) saturation of cation exchange sites and proton supply strongly affected PR dissolution in these soils. Acid soils with pH-(H2O), < 5 (NKL, ODJ, NSM, MTF) dissolved more phosphate rock than those with pH-(H2O) > 5 (DSC, FGT, BAF). However, the lack of a sufficient Ca sink in the former constrained the dissolution of both PRs. The dissolution of GPR in the slightly acidic soils was limited by increase in Ca saturation and that of HPR was constrained by limited supply in protons. Generally, the dissolution of GPR was higher than that of HPR for each soil. The kinetics of dissolution of PR in the soils was best described by the power function equation P At B. More efficient use of PR in these soils can be achieved by raising the soil cation exchange capacity, thereby increasing the Ca sink size. This could be done by amending such soils with organic materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differences in whole-body lipid metabolism between men and women are indicated by lower-body fat accumulation in women but more marked accumulation of fat in the intra-abdominal visceral fat depots of men. Circulating blood lipid concentrations also show gender-related differences. These differences are most marked in premenopausal women, in whom total cholesterol, LDL-cholesterol and triacylglycerol concentrations are lower and HDL-cholesterol concentration is higher than in men. Tendency to accumulate body fat in intra-abdominal fat stores is linked to increased risk of CVD, metabolic syndrome, diabetes and other insulin-resistant states. Differential regional regulation of adipose tissue lipolysis and lipogenesis must underlie gender-related differences in the tendency to accumulate fat in specific fat depots. However, empirical data to support current hypotheses remain limited at the present time because of the demanding and specialist nature of the methods used to study adipose tissue metabolism in human subjects. In vitro and in vivo data show greater lipolytic sensitivity of abdominal subcutaneous fat and lesser lipolytic sensitivity of femoral and gluteal subcutaneous fat in women than in men. These differences appear to be due to fewer inhibitory alpha adrenergic receptors in abdominal regions and greater a adrenergic receptors in gluteal and femoral regions in women than in men. There do not appear to be major gender-related differences in rates of fatty acid uptake (lipogenesis) in different subcutaneous adipose tissue regions. In visceral fat rates of both lipolysis and lipogenesis appear to be greater in men than in women; higher rates of lipolysis may be due to fewer alpha adrenergic receptors in this fat depot in men. Fatty acid uptake into this depot in the postprandial period is approximately 7-fold higher in men than in women. Triacylglycerol concentrations appear to be a stronger cardiovascular risk factor in women than in men, with particular implications for cardiovascular risk in diabetic women. The increased triacylglycerol concentrations observed in women taking hormone-replacement therapy (HRT) may explain the paradoxical findings of increased rates of CVD in women taking HRT that have been reported from recent primary and secondary prevention trials of HRT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Flavonoid metabolites remain in blood for periods of time potentially long enough to allow interactions with cellular components of this tissue. It is well-established that flavonoids are metabolised within the intestine and liver into methylated, sulphated and glucuronidated counterparts, which inhibit platelet function. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate evidence suggesting platelets which contain metabolic enzymes, as an alternative location for flavonoid metabolism. Quercetin and a plasma metabolite of this compound, 4'-O-methyl quercetin (tamarixetin) were shown to gain access to the cytosolic compartment of platelets, using confocal microscopy. High performance liquid chromatography (HPLC) and mass spectrometry (MS) showed that quercetin was transformed into a compound with a mass identical to tamarixetin, suggesting that the flavonoid was methylated by catechol-O-methyl transferase (COMT) within platelets. CONCLUSIONS/SIGNIFICANCE: Platelets potentially mediate a third phase of flavonoid metabolism, which may impact on the regulation of the function of these cells by metabolites of these dietary compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We elucidate the detailed effects of gut microbial depletion on the bile acid sub-metabolome of multiple body compartments (liver, kidney, heart, and blood plasma) in rats. We use a targeted ultraperformance liquid chromatography with time of flight mass-spectrometry assay to characterize the differential primary and secondary bile acid profiles in each tissue and show a major increase in the proportion of taurine-conjugated bile acids in germ-free (GF) and antibiotic (streptomycin/penicillin)-treated rats.Although conjugated bile acids dominate the hepatic profile (97.0 ± 1.5%) of conventional animals, unconjugated bile acids comprise the largest proportion of the total measured bile acid profile in kidney (60.0±10.4%) andheart (53.0 ± 18.5%) tissues. In contrast, in the GF animal, taurine-conjugated bile acids (especially taurocholic acid and tauro-β-muricholic acid) dominated the bile acid profiles (liver: 96.0 ± 14.5%; kidney: 96 ± 1%; heart: 93 ± 1%; plasma: 93.0 ± 2.3%), with unconjugated and glycine-conjugated species representing a small proportion of the profile. Higher free taurine levels were found in GF livers compared with the conventional liver (5.1-fold; P < 0.001). Bile acid diversity was also lower in GF and antibiotic-treated tissues compared with conventional animals. Because bile acids perform important signaling functions, it is clear that these chemical communication networks are strongly influencedbymicrobial activitiesormodulation, as evidenced by farnesoid X receptor-regulated pathway transcripts. The presence of specific microbial bile acid co-metabolite patterns in peripheral tissues (including heart and kidney) implies a broader signaling role for these compounds and emphasizes the extent of symbiotic microbial influences in mammalian homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to construct a dynamic model of hepatic amino acid metabolism in the lactating dairy cow that could be parameterized using net flow data from in vivo experiments. The model considers 22 amino acids, ammonia, urea, and 13 energetic metabolites, and was parameterized using a steady-state balance model and two in vivo, net flow experiments conducted with mid-lactation dairy cows. Extracellular flows were derived directly from the observed data. An optimization routine was used to derive nine intracellular flows. The resulting dynamic model was found to be stable across a range of inputs suggesting that it can be perturbed and applied to other physiological states. Although nitrogen was generally in balance, leucine was in slight deficit compared to predicted needs for export protein synthesis, suggesting that an alternative source of leucine (e.g. peptides) was utilized. Simulations of varying glucagon concentrations indicated that an additional 5 mol/d of glucose could be synthesized at the reference substrate concentrations and blood flows. The increased glucose production was supported by increased removal from blood of lactate, glutamate, aspartate, alanine, asparagine, and glutamine. As glucose Output increased, ketone body and acetate release increased while CO2 release declined. The pattern of amino acids appearing in hepatic vein blood was affected by changes in amino acid concentration in portal vein blood, portal blood flow rate and glucagon concentration, with methionine and phenylalanine being the most affected of essential amino acids. Experimental evidence is insufficient to determine whether essential amino acids are affected by varying gluconeogenic demands. (C) 2004 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the study was to evaluate the cost and environmental impact of replacing traditional corn, which is the main ingredient in poultry diets, with a high-oil corn (HOC) variety. Using linear programming, diets were formulated with either traditional corn or HOC. The results indicate that HOC-based diets cost up to $11.38/tonne less than traditional corn-based diets. Using HOC rather than traditional corn in diets has the potential to reduce the annual nitrogen excreted to the environment from broilers and broiler breeders in Brazil by 6.44 Mtonnes. In addition, there is the potential to reduce P excretion by 4.52 Mtonnes/yr, because the need to supplement diets with inorganic P sources, such as dicalcium phosphate, is much lower with HOC-based diets. We estimate that 28.5 Mtonnes of dicalcium phosphate can be saved annually using HOC in Brazilian poultry diets. The literature suggests that replacing traditional corn with HOC does not affect bird metabolism, while positive impacts on growth rate have been recorded. Therefore, substituting traditional corn with HOC has cost and environmental benefits for the Brazilian poultry industry without compromising productivity.