7 resultados para mAb
em CentAUR: Central Archive University of Reading - UK
Resumo:
The outer domain (OD) of human immunodeficiency virus (HIV)-1 gp120 represents an attractive, if difficult, target for a beneficial immune response to HIV infection. Unlike the entire gp120, the OD is structurally stable and contains the surfaces that interact with both the primary and secondary cellular receptors. The primary strain-specific neutralizing target, the V3 loop, lies within the OD, as do epitopes for two cross-reactive neutralizing monoclonal antibodies (mAbs), b12 and 2G12, and the contact sites for a number of inhibitory lectins. The OD is poorly immunogenic, at least in the context of complete gp120, but purposeful OD immunization can lead to a substantial antibody response. Here, we map the antibody generated following immunization with a clade C OD. In contrast to published data for the clade B OD, the majority of the polyclonal response to the complete clade C OD is to the V3 loop; deletion of the loop substantially reduces immunogenicity. When the loop sequence was substituted for the epitope for 2F5, a well-characterized human cross-neutralizing mAb, a polyclonal response to the epitope was generated. A panel of mAbs against the clade C OD identified two mAbs that reacted with the loop and were neutralizing for clade C but not B isolates. Other mAbs recognized both linear and conformational epitopes in the OD. We conclude that, as for complete gp120, V3 immunodominance is a property of OD immunogens, that the responses can be neutralizing and that it could be exploited for the presentation of other epitopes.
Resumo:
A well defined structure is available for the carboxyl half of the cellular prion protein (PrPc), while the structure of the amino terminal half of the molecule remains ill defined. The unstructured nature of the polypeptide has meant that relatively few of the many antibodies generated against PrPc recognise this region. To circumvent this problem, we have used a previously characterised and well expressed fragment derived from the amino terminus of PrPc as bait for panning a single chain antibody phage (scFv-P) library. Using this approach, we identified and characterised I predominant and 3 additional scFv-Ps that contained different V-H and V-L sequences and that bound specifically to the PrPc target. Epitope mapping revealed that all scFv-Ps recognised linear epitopes between PrPc residues 76 and 156. When compared with existing monoclonal antibodies (MAb), the binding of the scFvs was significantly different in that high level binding was evident on truncated forms of PrPc that reacted poorly or not at all with several pre-existing MAbs. These data suggest that the isolated scFv-Ps bind to novel epitopes within the aminocentral region of PrPc. In addition, the binding of MAbs to known linear epitopes within PrPc depends strongly on the endpoints of the target PrPc fragment used. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Background: The possibility that a sub domain of a C clade HIV-1 gp120 could act as an effective immunogen was investigated. To do this, the outer domain ( OD) of gp120(CN54) was expressed and characterized in a construct marked by a re-introduced conformational epitope for MAb 2G12. The expressed sequence showed efficient epitope retention on the isolated ODCN54 suggesting authentic folding. To facilitate purification and subsequent immunogenicity ODCN54 was fused to the Fc domain of human IgGl. Mice were immunised with the resulting fusion proteins and also with gp120(CN54)-Fc and gp120 alone. Results: Fusion to Fc was found to stimulate antibody titre and Fc tagged ODCN54 was substantially more immunogenic than non-tagged gp120. Immunogenicity appeared the result of Fc facilitated antigen processing as immunisation with an Fc domain mutant that reduced binding to the FcR lead to a reduction in antibody titre when compared to the parental sequence. The breadth of the antibody response was assessed by serum reaction with five overlapping fragments of gp120(CN54) expressed as GST fusion proteins in bacteria. A predominant anti-inner domain and anti-V3C3 response was observed following immunisation with gp120(CN54)-Fc and an anti-V3C3 response to the ODCN54-Fc fusion. Conclusion: The outer domain of gp120(CN54) is correctly folded following expression as a C terminal fusion protein. Immunogenicity is substantial when targeted to antigen presenting cells but shows V3 dominance in the polyvalent response. The gp120 outer domain has potential as a candidate vaccine component.
Resumo:
Many clade C isolates of HIV-1 do not react with monoclonal antibody (MAb) 2G12, a broad-ranging human neutralizing MAb that recognizes high mannose carbohydrate groups attached to glycoprotein gp120. We reintroduced a partial and complete 2G12 epitope into a clade C background, HIV-1(CN54), and examined the antibody reactivity of the resulting recombinant molecules. Two glycosylation sites recovered 2G12 binding completely, but some binding was evident after the reintroduction of a single glycosylation site at Asn295.
Resumo:
This study tested the hypothesis that a set of predominantly myeloid restricted receptors (F4/80, CD36, Dectin-1, CD200 receptor and mannan binding lectins) and the broadly expressed CD200 played a role in a key function of plasmacytoid DC (pDC), virally induced type I interferon (IFN) production. The Dectin-1 ligands zymosan, glucan phosphate and the anti-Dectin-1 monoclonal antibody (mAb) 2A11 had no effect on influenza virus induced IFNα/β production by murine splenic pDC. However, mannan, a broad blocking reagent against mannose specific receptors, inhibited IFNα/β production by pDC in response to inactivated influenza virus. Moreover, viral glycoproteins (influenza virus haemagglutinin and HIV-1 gp120) stimulated IFNα/β production by splenocytes in a mannan-inhibitable manner, implicating the function of a lectin in glycoprotein induced IFN production. Lastly, the effect of CD200 on IFN induction was investigated. CD200 knock-out macrophages produced more IFNα than wild-type macrophages in response to polyI:C, a MyD88-independent stimulus, consistent with CD200's known inhibitory effect on myeloid cells. In contrast, blocking CD200 with an anti-CD200 mAb resulted in reduced IFNα production by pDC-containing splenocytes in response to CpG and influenza virus (MyD88-dependent stimuli). This suggests there could be a differential effect of CD200 on MyD88 dependent and independent IFN induction pathways in pDC and macrophages. This study supports the hypothesis that a mannan-inhibitable lectin and CD200 are involved in virally induced type I IFN induction.
Resumo:
Therapeutic activation of Toll-like receptors (TLR) has potential for cancer immunotherapy, for augmenting the activity of anti-tumor monoclonal antibodies (mAbs), and for improved vaccine adjuvants. A previous attempt to specifically target TLR agonists to dendritic cells (DC) using mAbs failed because conjugation led to non-specific binding and mAbs lost specificity. We demonstrate here for the first time the successful conjugation of a small molecule TLR7 agonist to an anti-tumour mAb (the anti-hCD 20 rituximab) without compromising antigen specificity. The TLR7 agonist UC-1V150 was conjugated to rituximab using two conjugation methods and yield, molecular substitution ratio, retention of TLR7 activity and specificity of antigen binding were compared. Both conjugation methods produced rituximab-UC-1V150 conjugates with UC-1V150 : rituximab ratio ranging from 1:1 to 3:1 with drug loading quantified by UV spectroscopy and drug substitution ratio verified by MALDI TOF mass spectroscopy. The yield of purified conjugates varied with conjugation method, and dropped as low as 31% using a method previously described for conjugating UC-1V150 to proteins, where a bifunctional crosslinker was firstly reacted with rituximab, and secondly to the TLR7 agonist. We therefore developed a direct conjugation method by producing an amine-reactive UV active version of UC-1V150, termed NHS:UC-1V150. Direct conjugation with NHS:UC-1V150 was quick and simple and gave improved conjugate yields of 65-78%. Rituximab-UC-1V150 conjugates had the expected pro-inflammatory activity in vitro (EC50 28-53 nM) with a significantly increased activity over unconjugated UC-1V150 (EC50 547 nM). Antigen binding and specificity of the rituxuimab-UC-1V150 conjugates was retained, and after incubation with human peripheral blood leukocytes, all conjugates bound strongly only to CD20-expressing B cells whilst no non-specific binding to CD20-negative cells was observed. Selective targeting of Toll-like receptor activation directly within tumors or to DC is now feasible.
Resumo:
The C-type lectin-like receptor CLEC-2 signals via phosphorylation of a single cytoplasmic YXXL sequence known as a hem-immunoreceptor tyrosine-based activation motif (hemITAM). In this study, we show that phosphorylation of CLEC-2 by the snake toxin rhodocytin is abolished in the absence of the tyrosine kinase Syk but is not altered in the absence of the major platelet Src family kinases, Fyn, Lyn, and Src, or the tyrosine phosphatase CD148, which regulates the basal activity of Src family kinases. Further, phosphorylation of CLEC-2 by rhodocytin is not altered in the presence of the Src family kinase inhibitor PP2, even though PLCγ2 phosphorylation and platelet activation are abolished. A similar dependence of phosphorylation of CLEC-2 on Syk is also seen in response to stimulation by an IgG mAb to CLEC-2, although interestingly CLEC-2 phosphorylation is also reduced in the absence of Lyn. These results provide the first definitive evidence that Syk mediates phosphorylation of the CLEC-2 hemITAM receptor with Src family kinases playing a critical role further downstream through the regulation of Syk and other effector proteins, providing a new paradigm in signaling by YXXL-containing receptors.