49 resultados para hypertrophy

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myostatin, a member of the TGF-beta family, has been identified as a powerful inhibitor of muscle growth. Absence or blockade of myostatin induces massive skeletal muscle hypertrophy that is widely attributed to proliferation of the population of muscle fiber-associated satellite cells that have been identified as the principle source of new muscle tissue during growth and regeneration. Postnatal blockade of myostatin has been proposed as a basis for therapeutic strategies to combat muscle loss in genetic and acquired myopathies. But this approach, according to the accepted mechanism, would raise the threat of premature exhaustion of the pool of satellite cells and eventual failure of muscle regeneration. Here, we show that hypertrophy in the absence of myostatin involves little or no input from satellite cells. Hypertrophic fibers contain no more myonuclei or satellite cells and myostatin had no significant effect on satellite cell proliferation in vitro, while expression of myostatin receptors dropped to the limits of detectability in postnatal satellite cells. Moreover, hypertrophy of dystrophic muscle arising from myostatin blockade was achieved without any apparent enhancement of contribution of myonuclei from satellite cells. These findings contradict the accepted model of myostatin-based control of size of postnatal muscle and reorient fundamental investigations away from the mechanisms that control satellite cell proliferation and toward those that increase myonuclear domain, by modulating synthesis and turnover of structural muscle fiber proteins. It predicts too that any benefits of myostatin blockade in chronic myopathies are unlikely to impose any extra stress on the satellite cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth of the post- natal mammalian heart occurs primarily by cardiac myocyte hypertrophy. Previously, we and others have shown that a partial re- activation of the cell cycle machinery occurs in myocytes undergoing hypertrophy such that cells progress through the G(1)/ S transition. In this study, we have examined the regulation of the E2F family of transcription factors that are crucial for the G(1)/ S phase transition during normal cardiac development and the development of myocyte hypertrophy in the rat. Thus, mRNA and protein levels of E2F- 1, 3, and 4 and DP- 1 and DP- 2 were down- regulated during development to undetectable levels in adult myocytes. Interestingly, E2F- 5 protein levels were substantially up- regulated during development. In contrast, an induction of E2F- 1, 3, and 4 and the DP- 1 protein was observed during the development of myocyte hypertrophy in neonatal myocytes treated with serum or phenylephrine, whereas the protein levels of E2F- 5 were decreased with serum stimulation. E2F activity, as measured by a cyclin E promoter luciferase assay and E2F- DNA binding activity, increased significantly during the development of hypertrophy with serum and phenylephrine compared with non- stimulated cells. Inhibiting E2F activity with a specific peptide that blocks E2F- DP heterodimerization prevented the induction of hypertrophic markers ( atrial natriuretic factor and brain natriuretic peptide) in response to serum and phenylephrine, reduced the increase in myocyte size, and inhibited protein synthesis in stimulated cells. Thus, we have shown that the inhibition of E2F function prevents the development of hypertrophy. Targeting E2F function might be a useful approach for treating diseases that cause pathophysiological hypertrophic growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have identified and characterised a cDNA encoding a novel gene, designated myocyte stress 1 (ms1), that is up-regulated within 1 h in the left ventricle following the application of pressure overload by aortic banding in the rat. The deduced ms1 protein of 317 amino acids contains several putative functional motifs, including a region that is evolutionarily conserved. Distribution analysis indicates that rat ms1 mRNA expression is predominantly expressed in striated muscle and progressively increases in the left ventricle from embryo to adulthood. These findings suggest that rust may be important in striated muscle biology and the development of pressure-induced left ventricular hypertrophy. (C) 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of cell cycle dependent molecules in controlling the switch from cardiac myocyte hyperplasia to hypertrophy remains unclear, although in the rat this process occurs between day 3 and 4 after birth. In this study we have determined (1) cell cycle profiles by fluorescence activated cell sorting (FACS); and (2) expressions, co-expressions and activities of a number of cyclins, cyclin-dependent kinases (CDKs) and CDK inhibitors by reverse transcriptase-polymerase chain reaction (RT-PCR), immunoblotting andin vitrokinase assays in freshly isolated rat cardiac myocytes obtained from 2, 3, 4 and 5-day-old animals. The percentage of myocytes found in the S phase of the cell cycle decreased significantly during the transition from hyperplasia to hypertrophy (5.5, 3.5, 2.3 and 1.9% of cells in 2-, 3-, 4- and 5-day-old myocytes, respectively,P<0.05), concomitant with a significant increase in the percentage of G0/G1phase cells. At the molecular level, the expressions and activities of G1/S and G2/M phase acting cyclins and CDKs were downregulated significantly during the transition from hyperplasia to hypertrophy, whereas the expressions and activities of G1phase acting cyclins and CDKs were upregulated significantly during this transition. In addition, p21CIP1- and p27KIP1- associated CDK kinase activities remained relatively constant when histone H1 was used as a substrate, whereas phosphorylation of the retinoblastoma protein was upregulated significantly during the transition from hyperplasia to hypertrophy. Thus, there is a progressive and significant G0/G1phase blockade during the transition from myocyte hyperplasia to hypertrophy. Whilst CDK2 and cdc2 may be pivotal in the withdrawal of cardiac myocytes from the cell cycle, CDK4 and CDK6 may be critical for maintaining hypertrophic growth of the myocyte during development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We postulated that the cyclin-dependent kinase inhibitors p21 and p27 could regulate the alterations in growth potential of cardiomyocytes during left ventricular hypertrophy (LVH). LVH was induced in adult rat hearts by aortic constriction (AC) and was monitored at days 0, 1, 3, 7, 14, 21, and 42 postoperation. Relative to sham-operated controls (SH), left ventricle (LV) weight-to-body weight ratio in AC increased progressively with time without significant differences in body weight or right ventricle weight-to-body weight ratio. Atrial natriuretic factor mRNA increased significantly in AC to 287% at day 42 compared with SH (P < 0.05), whereas p21 and p27 mRNA expression in AC rats decreased significantly by 58% (P < 0.03) and 40% (P < 0.05) at day 7, respectively. p21 and p27 protein expression decreased significantly from days 3 to 21 in AC versus SH, concomitant with LV adaptive growth. Immunocytochemistry showed p21 and p27 expression in cardiomyocyte nuclei. Thus downregulation of p21 and p27 may modulate the adaptive growth of cardiomyocytes during pressure overload-induced LVH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transforming growth factorβ(TGFβ) superfamily plays an important role in the myocardial response to hypertrophy. We have investigated the protein expression of TGFβ1,β2andβ3in left ventricular tissue, and determined their subcellular distribution in myocytes by immunoblotting and immunocytochemistry during the development of left ventricular hypertrophy (LVH), using isoform specific antibodies to TGFβ1,β2andβ3. LVH was produced in rats by aortic constriction (AC) and LV tissue was obtained at days (d)0, 1, 3, 7, 14, 21 and 42 following operation. Compared with age matched sham-operated controls (SH), TGFβ1levels in LV tissue of AC rats increased significantly from d1–d14 (P<0.03) concomitant with the adaptive growth of LV tissue. In contrast, TGFβ3levels decreased in LV tissue of AC rats from d3 post-operation (significant from d14–d42,P<0.03). No significant difference in TGFβ2levels were observed from SH and AC rats after operation. Antibodies to TGFβ1stained intercalated disks, sarcolemmal membranes and cytoplasm, but not nuclei, of cardiomyocytes on LV sections from untreated and SH rats. However, a trans-localisation of TGFβ1to the nuclei of cardiomyocytes was observed in AC hearts. Antibodies to TGFβ3stained T tubules, cytoplasm and the nuclei of cardiomyocytes from untreated and SH rats. However, by d7 post-AC operation, TGFβ3expression was lost rapidly from nuclei of cardiomyocytes followed by a reduction in total TGFβ3immunofluorescence in myocytes. Antibodies to TGFβ2stained sarcolemmal membranes of cardiomyocytes from both SH and AC rats without significant difference between groups. Thus, the differential pattern of protein expression and subcellular distribution of TGFβ1,β2andβ3in myocytes during the development of LVH suggests that these molecules play different roles in the response of cardiomyocytes to LVH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Murine transgenesis using cardioselective promoters has become increasingly common in studies of cardiac hypertrophy and heart failure, with expression mediated by pronuclear microinjection being the commonest format. Without wishing to decry their usefulness, in our view, such studies are not necessarily as unambiguous as sometimes portrayed and clarity is not always their consequence. We describe broadly the types of approach undertaken in the heart and point out some of the drawbacks. We provide three arbitrarily-chosen examples where, in spite of a number of often-independent studies, no consensus has yet been achieved. These include glycogen synthase kinase 3, the extracellular signal-regulated kinase pathway and the ryanodine receptor 2. We believe that the transgenic approach should not be viewed in an empyreal light and, depending on the questions asked, we suggest that other experimental systems provide equal (or even more) valuable outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myostatin is a negative regulator of muscle mass, and several strategies are being developed to knockdown its expression to improve muscle-wasting conditions. Strategies using antimyostatin-blocking antibodies, inhibitory-binding partners, signal transduction blockers, and RNA interference system (RNAi)-based knockdown have yielded promising results and increased muscle mass in experimental animals. These approaches have, however, a number of disadvantages such as transient effects or adverse immune complications. We report here the use of antisense oligonucleotides (AOs) to manipulate myostatin pre-mRNA splicing and knockdown myostatin expression. Both 2’O-methyl phosphorothioate RNA (2’OMePS) and phosphorodiamidate morpholino oligomers (PMO) led to efficient exon skipping in vitro and in vivo and knockdown of myostatin at the transcript level. The substantial myostatin exon skipping observed after systemic injection of Vivo-PMO into normal mice led to a significant increase in soleus muscle mass as compared to the controls injected with normal saline suggesting that this approach could be feasible to ameliorate muscle-wasting pathologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background—Probiotics are extensively used to promote gastrointestinal health and emerging evidence suggests that their beneficial properties can extend beyond the local environment of the gut. Here, we determined whether oral probiotic administration can alter the progression of post-infarction heart failure. Methods and Results—Rats were subjected to six weeks of sustained coronary artery occlusion and administered the probiotic Lactobacillus rhamnosus GR-1 or placebo in the drinking water ad libitum. Culture and 16s rRNA sequencing showed no evidence of GR-1 colonization or a significant shift in the composition of the cecal microbiome. However, animals administered GR-1 exhibited a significant attenuation of left ventricular hypertrophy based on tissue weight assessment as well as gene expression of atrial natriuretic peptide. Moreover, these animals demonstrated improved hemodynamic parameters reflecting both improved systolic and diastolic left ventricular function. Serial echocardiography revealed significantly improved left ventricular parameters throughout the six week follow-up period including a marked preservation of left ventricular ejection fraction as well as fractional shortening. Beneficial effects of GR-1 were still evident in those animals in which GR-1 was withdrawn at four weeks suggesting persistence of the GR-1 effects following cessation of therapy. Investigation of mechanisms showed a significant increase in the leptin to adiponectin plasma concentration ratio in rats subjected to coronary ligation which was abrogated by GR-1. Metabonomic analysis showed differences between sham control and coronary artery ligated hearts particularly with respect to preservation of myocardial taurine levels. Conclusions—The study suggests that probiotics offer promise as a potential therapy for the attenuation of heart failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maximally effective concentrations of endothelin-1 (ET-1), acidic FGF (aFGF), or 12-O-tetradecanoylphorbol-13-acetate (TPA) activated mitogen-activated protein kinase (MAPK) by 3-4-fold in crude extracts of myocytes cultured from neonatal rat heart ventricles. Maximal activation was achieved after 5 min. Thereafter, MAPK activity stimulated by ET-1 or aFGF declined to control values within 1-2 h, whereas activation by TPA was more sustained. Two peaks of MAPK activity (a 42- and a 44-kDa MAPK) were resolved in cells exposed to ET-1 or aFGF by fast protein liquid chromatography on a Mono Q column. One major and one minor peak of MAPK kinase (MAPKK) was stimulated by ET-1 or aFGF. Cardiac myocytes expressed protein kinase C (PKC)-alpha, -delta, -epsilon and -zeta as shown immunoblotting. Exposure to 1 microM TPA for 24 h down-regulated PKC-alpha, -delta, and -epsilon, but not PKC-zeta. This maneuver wholly abolished the activation of MAPK on re-exposure to TPA but did not affect the response to aFGF. The effect of ET-1 was partially down-regulated. ET-1 stimulated phospho[3H]inositide hydrolysis 18-fold, whereas aFGF stimulated by only 30%. Agonists which initially utilize dissimilar signaling pathways may therefore converge at the level of MAPKK/MAPK and this may be relevant to the hypertrophic response of the heart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenylephrine and noradrenaline (alpha-adrenergic agonism) or isoprenaline (beta-adrenergic agonism) stimulated protein synthesis rates, increased the activity of the atrial natriuretic factor gene promoter and activated mitogen-activated protein kinase (MAPK). The EC50 for MAPK activation by noradrenaline was 2-4 microM and that for isoprenaline was 0.2-0.3 microM. Maximal activation of MAPK by isoprenaline was inhibited by the beta-adrenergic antagonist, propranolol, whereas the activation by noradrenaline was inhibited by the alpha1-adrenergic antagonist, prazosin. FPLC on a Mono-Q column separated two peaks of MAPK (p42MAPK and p44MAPK) and two peaks of MAPK-activating activity (MEK) activated by isoprenaline or noradrenaline. Prolonged phorbol ester exposure partially down-regulated the activation of MAPK by noradrenaline but not by isoprenaline. This implies a role for protein kinase C in MAPK activation by noradrenaline but not isoprenaline. A role for cyclic AMP in activation of the MAPK pathway was eliminated when other agonists that elevate cyclic AMP in the cardiac myocyte did not activate MAPK. In contrast, MAPK was activated by exposure to ionomycin, Bay K8644 or thapsigargin that elevate intracellular Ca2+. Furthermore, depletion of extracellular Ca2+ concentrations with bis-(o-aminophenoxy)ethane-NNN'N'-tetra-acetic acid (BAPTA) or blocking of the L-type Ca2+ channel with nifepidine or verapamil inhibited the response to isoprenaline without inhibiting the responses to noradrenaline. We conclude that alpha- and beta-adrenergic agonists can activate the MEK/MAPK pathway in the heart by different signalling pathways. Elevation of intracellular Ca2+ rather than cyclic AMP appears important in the activation of MAPK by isoprenaline in the cardiac myocyte.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined the activation of the p38 mitogen-activated protein kinase (p38-MAPK) pathway by the G protein-coupled receptor agonists, endothelin-1 and phenylephrine in primary cultures of cardiac myocytes from neonatal rat hearts. Both agonists increased the phosphorylation (activation) of p38-MAPK by approximately 12-fold. A p38-MAPK substrate, MAPK-activated protein kinase 2 (MAPKAPK2), was activated approximately fourfold and 10 microM SB203580, a p38-MAPK inhibitor, abolished this activation. Phosphorylation of the MAPKAPK2 substrate, heat shock protein 25/27, was also increased. Using selective inhibitors, activation of the p38-MAPK pathway by endothelin-1 was shown to involve protein kinase C but not Gi/Go nor the extracellularly responsive kinase (ERK) pathway. SB203580 failed to inhibit the morphological changes associated with cardiac myocyte hypertrophy induced by endothelin-1 or phenylephrine between 4 and 24 h. However, it decreased the myofibrillar organization and cell profile at 48 h. In contrast, inhibition of the ERK cascade with PD98059 prevented the increase in myofibrillar organization but not cell profile. These data are not consistent with a role for the p38-MAPK pathway in the immediate induction of the morphological changes of hypertrophy but suggest that it may be necessary over a longer period to maintain the response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypertrophy of myocytes in the heart ventricles is an important adaptation that in vivo occurs in response to a requirement for increased contractile power. It involves changes at the level of gene transcription, stimulation of the rate of protein synthesis (translation), and increased assembly of myofibrils. There is mounting evidence of the involvement of reversible protein phosphorylation and dephosphorylation in most of these processes. Protein kinase C, mitogen-activated protein kinases, and transcription factors have been implicated in the modulation of the transcriptional changes. Activation of translation may also be mediated through protein phosphorylation/dephosphorylation, although this has not been clearly established in the heart. Here we provide a critical overview of the signalling pathways involved in the hypertrophic response and provide a scheme to account for many of its features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The small (21 kDa) guanine nucleotide-binding protein (small G protein) superfamily comprises 5 subfamilies (Ras, Rho, ADP ribosylation factors [ARFs], Rab, and Ran) that act as molecular switches to regulate numerous cellular responses. Cardiac myocyte hypertrophy is associated with cell growth and changes in the cytoskeleton and myofibrillar apparatus. In other cells, the Ras subfamily regulates cell growth whereas the Rho subfamily (RhoA, Rac1, and Cdc42) regulates cell morphology. Thus, the involvement of small G proteins in hypertrophy has become an area of significant interest. Hearts from transgenic mice expressing activated Ras develop features consistent with hypertrophy, whereas mice overexpressing RhoA develop lethal heart failure. In isolated neonatal rat cardiac myocytes, transfection or infection with activated Ras, RhoA, or Rac1 induces many of the features of hypertrophy. We discuss the mechanisms of activation of the small G proteins and the downstream signaling pathways involved. The latter may include protein kinases, particularly the mitogen-activated or Rho-activated protein kinases. We conclude that although there is significant evidence implicating Ras, RhoA, and Rac1 in hypertrophy, the mechanisms are not fully understood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considerable efforts have been expended in elucidating the inter-cellular and intra-cellular signaling pathways which elicit cardiac myocyte hypertrophy or apoptosis, and in identifying the changes which are associated with the end-stage of the response. The challenge now is to link the two. Although some of the signaling effects will be the acute modulation of existing protein function, long-term effects which bring about and maintain the hypertrophic state or which culminate in cell death are mediated at the level of gene and protein expression. With the advances in micro-array technology and genome sequencing, it is now possible to obtain a picture of the global gene expression profile in myocytes or in whole heart which dictates the proteins which could be made. This is not the final picture since additional regulation at the level of translation modulates the relative proportions of each protein that can be made from the transcriptome. Even here, further regulation of protein stability and turnover means that ultimately it is still necessary to examine the proteome to determine what may cause the functional changes in a cell. Thus, in order to gain a full picture of events which regulate the response and gain some insight into possible points of intervention for therapy, it is necessary to examine gene expression, mRNA translation and protein expression in concert.