6 resultados para congestive cardiomyopathy

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current protocols of anthracycline-induced cardiomyopathy in rabbits present with high premature mortality and nephrotoxicity, thus rendering them unsuitable for studies requiring long-term functional evaluation of myocardial function (e.g., stem cell therapy). We compared two previously described protocols to an in-house developed protocol in three groups: Group DOX2 received doxorubicin 2 mg/kg/week (8 weeks); Group DAU3 received daunorubicin 3 mg/kg/week (10 weeks); and Group DAU4 received daunorubicin 4 mg/kg/week (6 weeks). A cohort of rabbits received saline (control). Results of blood tests, cardiac troponin I, echocardiography, and histopathology were analysed. Whilst DOX2 and DAU3 rabbits showed high premature mortality (50% and 33%, resp.), DAU4 rabbits showed 7.6% premature mortality. None of DOX2 rabbits developed overt dilated cardiomyopathy; 66% of DAU3 rabbits developed overt dilated cardiomyopathy and quickly progressed to severe congestive heart failure. Interestingly, 92% of DAU4 rabbits showed overt dilated cardiomyopathy and 67% developed congestive heart failure exhibiting stable disease. DOX2 and DAU3 rabbits showed alterations of renal function, with DAU3 also exhibiting hepatic function compromise. Thus, a shortened protocol of anthracycline-induced cardiomyopathy as in DAU4 group results in high incidence of overt dilated cardiomyopathy, which insidiously progressed to congestive heart failure, associated to reduced systemic compromise and very low premature mortality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coxsackievirus B3 (CVB3) infection can result in myocarditis, which in turn may lead to a protracted immune response and subsequent dilated cardiomyopathy. Human decay-accelerating factor (DAF), a binding receptor for CVB3, was synthesized as a soluble IgG1-Fc fusion protein (DAF-Fc). In vitro, DAF-Fc was able to inhibit complement activity and block infection by CVB3, although blockade of infection varied widely among strains of CVB3. To determine the effects of DAF-Fc in vivo, 40 adolescent A/J mice were infected with a myopathic strain of CVB3 and given DAF-Fc treatment 3 days before infection, during infection, or 3 days after infection; the mice were compared with virus alone and sham-infected animals. Sections of heart, spleen, kidney, pancreas, and liver were stained with hematoxylin and eosin and submitted to in situ hybridization for both positive-strand and negative-strand viral RNA to determine the extent of myocarditis and viral infection, respectively. Salient histopathologic features, including myocardial lesion area, cell death, calcification and inflammatory cell infiltration, pancreatitis, and hepatitis were scored without knowledge of the experimental groups. DAF-Fc treatment of mice either preceding or concurrent with CVB3 infection resulted in a significant decrease in myocardial lesion area and cell death and a reduction in the presence of viral RNA. All DAF-Fc treatment groups had reduced infectious CVB3 recoverable from the heart after infection. DAF-Fc may be a novel therapeutic agent for active myocarditis and acute dilated cardiomyopathy if given early in the infectious period, although more studies are needed to determine its mechanism and efficacy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this review article is to provide an overview of the role of pigs as a biomedical model for humans. The usefulness and limitations of porcine models have been discussed in terms of metabolic, cardiovascular, digestive and bone diseases in humans. Domestic pigs and minipigs are the main categories of pigs used as biomedical models. One drawback of minipigs is that they are in short supply and expensive compared with domestic pigs, which in contrast cost more to house, feed and medicate. Different porcine breeds show different responses to the induction of specific diseases. For example, ossabaw minipigs provide a better model than Yucatan for the metabolic syndrome as they exhibit obesity, insulin resistance and hypertension, all of which are absent in the Yucatan. Similar metabolic/physiological differences exist between domestic breeds (e.g. Meishan v. Pietrain). The modern commercial (e.g. Large White) domestic pig has been the preferred model for developmental programming due to the 2- to 3-fold variation in body weight among littermates providing a natural form of foetal growth retardation not observed in ancient (e.g. Meishan) domestic breeds. Pigs have been increasingly used to study chronic ischaemia, therapeutic angiogenesis, hypertrophic cardiomyopathy and abdominal aortic aneurysm as their coronary anatomy and physiology are similar to humans. Type 1 and II diabetes can be induced in swine using dietary regimes and/or administration of streptozotocin. Pigs are a good and extensively used model for specific nutritional studies as their protein and lipid metabolism is comparable with humans, although pigs are not as sensitive to protein restriction as rodents. Neonatal and weanling pigs have been used to examine the pathophysiology and prevention/treatment of microbial-associated diseases and immune system disorders. A porcine model mimicking various degrees of prematurity in infants receiving total parenteral nutrition has been established to investigate gut development, amino acid metabolism and non-alcoholic fatty liver disease. Endoscopic therapeutic methods for upper gastrointestinal tract bleeding are being developed. Bone remodelling cycle in pigs is histologically more similar to humans than that of rats or mice, and is used to examine the relationship between menopause and osteoporosis. Work has also been conducted on dental implants in pigs to consider loading; however with caution as porcine bone remodels slightly faster than human bone. We conclude that pigs are a valuable translational model to bridge the gap between classical rodent models and humans in developing new therapies to aid human health.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interest in the effects of insulin on the heart came with the recognition that hyperglycemia in the context of myocardial infarction is associated with increased risks of mortality, congestive heart failure, or cardiogenic shock. More recently, instigated by research findings on stress hyperglycemia in critical illness, this interest has been extended to the influence of insulin on clinical outcome after cardiac surgery. Even in nondiabetic individuals, stress hyperglycemia commonly occurs as a key metabolic response to critical illness, eg, after surgical trauma. It is recognized as a major pathophysiological feature of organ dysfunction in the critically ill. The condition stems from insulin resistance brought about by dysregulation of key homeostatic processes, which implicates immune/inflammatory, endocrine, and metabolic pathways. It has been associated with adverse clinical outcomes, including increased mortality, increased duration of mechanical ventilation, increased intensive care unit (ICU) and hospital stay, and increased risk of infection. Hyperglycemia in critical illness is managed with exogenous insulin as standard treatment; however, there is considerable disagreement among experts in the field as to what target blood glucose level is optimal for the critically ill patient. Conventionally, the aim of insulin therapy has been to maintain blood glucose levels below the renal threshold, typically 220 mg/dL (12.2 mmol/L). In recent years, some have advocated tight glycemic control (TGC) with intensive insulin therapy (IIT) to normalize blood glucose levels to within the euglycemic range, typically 80 to 110 mg/dL (4.4–6.1 mmol/L).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose of review: To provide an overview of the key earlier intervention studies with marine omega-3 fatty acids and to review and comment on recent studies reporting on mortality outcomes and on selected underlying mechanisms of action. Recent findings: Studies relating marine omega-3 fatty acid status to current or future outcomes continue to indicate benefits, for example, on incident heart failure, congestive heart failure, acute coronary syndrome, and all-cause mortality. New mechanistic insights into the actions of marine omega-3 fatty acids have been gained. Three fairly large secondary prevention trials have not confirmed the previously reported benefit of marine omega-3 fatty acids towards mortality in survivors of myocardial infarction. Studies of marine omega-3 fatty acids in atrial fibrillation and in cardiac surgery-induced atrial fibrillation have produced inconsistent findings and meta-analyses demonstrate no benefit. A study confirmed that marine omega-3 fatty acids reduce the inflammatory burden with advanced atherosclerotic plaques, so inducing greater stability. Summary: Recent studies of marine omega-3 fatty acids on morbidity of, and mortality from, coronary and cardiovascular disease have produced mixed findings. These studies raise new issues to be addressed in future research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is becoming apparent that anti-cancer chemotherapies are increasingly associated with cardiac dysfunction or even congestive heart failure (Minotti et al., 2004; Eliott, 2006; Suter et al., 2004; Ren, 2005). Our data suggest that one of the contributing factors to the cardiotoxicitiy of these drugs may be the activation of the AhR-response (including the increased expression of Cyp1a1) and/or other detoxification program in cardiac myocytes themselves. The induction of such responses may have secondary effects (e.g. to increase the level of intracellular oxidative stress), which may influence the contractility or even survival of cardiac myocytes. Furthermore, the specific response of cardiac myocytes, both with respect to the metabolizing enzymes and the export channels, potentially differs from other cells (e.g. we failed to detect any increase in expression of other “classical” AhR-responsive genes, Ugt1a1 and Ugt1a6). This could account for, for example, the observation that doxoribicinol (the 13-hydroxy form of doxorubicin) accumulates in cardiac myocytes but not in hepatocytes (Del Tacca et al., 1985; Olson et al., 1988). Given the vulnerability of the heart and the almost irreparable damage that can be done by severe oxidative stress, further studies would seem to be merited specifically on the effects of chemotherapeutic agents on cardiac myocytes.