3 resultados para biosolid

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

As part of the European Commission (EC)'s revision of the Sewage Sludge Directive and the development of a Biowaste Directive, there was recognition of the difficulty of comparing data from Member States (MSs) because of differences in sampling and analytical procedures. The 'HORIZONTAL' initiative, funded by the EC and MSs, seeks to address these differences in approach and to produce standardised procedures in the form of CEN standards. This article is a preliminary investigation into aspects of the sampling of biosolids, composts and soils to which there is a history of biosolid application. The article provides information on the measurement uncertainty associated with sampling from heaps, large bags and pipes and soils in the landscape under a limited set of conditions, using sampling approaches in space and time and sample numbers based on procedures widely used in the relevant industries and when sampling similar materials. These preliminary results suggest that considerably more information is required before the appropriate sample design, optimum number of samples, number of samples comprising a composite, and temporal and spatial frequency of sampling might be recommended to achieve consistent results of a high level of precision and confidence. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A semi-distributed model, INCA, has been developed to determine the fate and distribution of nutrients in terrestrial and aquatic systems. The model simulates nitrogen and phosphorus processes in soils, groundwaters and river systems and can be applied in a semi-distributed manner at a range of scales. In this study, the model has been applied at field to sub-catchment to whole catchment scale to evaluate the behaviour of biosolid-derived losses of P in agricultural systems. It is shown that process-based models such as INCA, applied at a wide range of scales, reproduce field and catchment behaviour satisfactorily. The INCA model can also be used to generate generic information for risk assessment. By adjusting three key variables: biosolid application rates, the hydrological connectivity of the catchment and the initial P-status of the soils within the model, a matrix of P loss rates can be generated to evaluate the behaviour of the model and, hence, of the catchment system. The results, which indicate the sensitivity of the catchment to flow paths, to application rates and to initial soil conditions, have been incorporated into a Nutrient Export Risk Matrix (NERM).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of biosolids from tomato processing on soil properties and wheat growth were investigated in an Alfisol from central Greece. Biosolids were mixed with soil from the surface (Ap) or subsurface (Bt) horizon in plastic containers at rates of 1%, 5%, and 10% by dry weight (d.w.; equivalent to 10, 50, and 100 Mg ha–1). Biosolid treatments were compared to an NH4Cl application (50 mg N kg–1) and an untreated control in (1) a 102 d incubation experiment at 28°C to determine biosolid nitrification potential and (2) a 45 d outdoor experiment to evaluate effects on soil fertility and wheat growth. Mineralization of biosolids in the incubation experiment resulted in accumulation of nitrate-N and indicated that biosolids were able to supply N that was in excess of crop needs in treatments of 5% and 10%. After 45 d of wheat growth, available soil nutrients (N, P) and P uptake by wheat were distinctly lower in the Bt than in the Ap horizon. However, soil pH, electrical conductivity, organic matter, total N, nitrate-N, extractable P, and exchangeable K increased with increasing rate of biosolid application in both soils. These were followed by corresponding increases in wheat nutrient uptake and biomass production, thus demonstrating the importance of this organic material for sustaining production in soils of low immediate fertility. Compared to the NH4Cl treatment (50 kg N ha–1 equivalent), biosolid application rates of 5% and 10% had higher available soil nutrients, similar or higher nutrient uptake and higher wheat biomass. But only an application of 10% biosolids provided sufficient N levels for wheat in the surface soil, and even higher applications were required for providing sufficient N and P in the Bt horizon.