2 resultados para X Chromosome

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

variety of transcription factors including Wilms tumor gene (Wt-1), steroidogenic factor 1 (Sf-1), dosage-sensitive sex reversal, adrenal hypoplasia congenita on the X-chromosome, Gene 1 (Dax-1), and pre-B-cell transcription factor 1 (Pbx1) have been defined as necessary for regular adrenocortical development. However, the role of Pbx1 for adrenal growth and function in the adult organism together with the molecular relationship between Pbx1 and these other transcription factors have not been characterized. We demonstrate that Pbx haploinsufficiency (Pbx1(+/-)) in mice is accompanied by a significant lower adrenal weight in adult animals compared with wild-type controls. Accordingly, baseline proliferating cell nuclear antigen levels are lower in Pbx1(+/-) mice, and unilateral adrenalectomy results in impaired contralateral compensatory adrenal growth, indicating a lower proliferative potential in the context of Pbx1 haploinsufficiency. In accordance with the key role of IGFs in adrenocortical proliferation and development, real-time RT-PCR demonstrates significant lower expression levels of the IGF-I receptor, and up-regulation of IGF binding protein-2. Functionally, Pbx1(+/-) mice display a blunted corticosterone response after ACTH stimulation coincident with lower adrenal expression of the ACTH receptor (melanocortin 2 receptor, Mc2-r). Mechanistically, in vitro studies reveal that Pbx1 and Sf-1 synergistically stimulates Mc2-r promoter activity. Moreover, Sf-1 directly activates the Pbx1 promoter activity in vitro and in vivo. Taken together, these studies provide evidence for a role of Pbx1 in the maintenance of a functional adrenal cortex mediated by synergistic actions of Pbx1 and Sf-1 in the transcriptional regulation of the critical effector of adrenocortical differentiation, the ACTH receptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mean platelet volume (MPV) and platelet count (PLT) are highly heritable and tightly regulated traits. We performed a genome-wide association study for MPV and identified one SNP, rs342293, as having highly significant and reproducible association with MPV (per-G allele effect 0.016 +/- 0.001 log fL; P < 1.08 x 10(-24)) and PLT (per-G effect -4.55 +/- 0.80 10(9)/L; P < 7.19 x 10(-8)) in 8586 healthy subjects. Whole-genome expression analysis in the 1-MB region showed a significant association with platelet transcript levels for PIK3CG (n = 35; P = .047). The G allele at rs342293 was also associated with decreased binding of annexin V to platelets activated with collagen-related peptide (n = 84; P = .003). The region 7q22.3 identifies the first QTL influencing platelet volume, counts, and function in healthy subjects. Notably, the association signal maps to a chromosome region implicated in myeloid malignancies, indicating this site as an important regulatory site for hematopoiesis. The identification of loci regulating MPV by this and other studies will increase our insight in the processes of megakaryopoiesis and proplatelet formation, and it may aid the identification of genes that are somatically mutated in essential thrombocytosis. (Blood. 2009; 113: 3831-3837)