8 resultados para Vascular Endothelial Growth Factors - therapeutic use

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the challenges in stem cell research is to avoid transformation during cultivation. We studied high passage subventricular zone derived neural stem cells (NSCs) cultures of adult rats in the absence of growth factors epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). We termed this culture exogenous growth factor independent neural stem cells (GiNSCs). GiNSCs expressed stemness markers, displayed a high constitutive NF-kappaB activity and an increased, aberrant, polyploid DNA content. GiNSCs showed a tumorigenic phenotype and formed colonies in a soft agar assay. Microarray analysis showed the up-regulation of the NF-kappaB target gene vascular endothelial growth factor (VEGF). In contrast, proneuronal genes were down-regulated. Under neuronal differentiation conditions GiNSCs adopted a glioma-like phenotype, with nuclear p53, preserving high amounts of Nestin positive cells and prolonged proliferation. Neutralization of VEGF strongly inhibited proliferation and induced differentiation. In a gain of function approach, the transfection of NSCs with constitutively active upstream kinase IKK-2 led to constitutively activated NF-kappaB, proliferation in absence of growth factors and augmented VEGF secretion. In a rescue experiment a reduction of NF-kappaB activity by overexpression of IkappaB-AA1 was able to shift the morphology toward an elongated cell form, increased cell death, and decreased proliferation. Thus GiNSCs may provide a potent tool in cancer research, as their exogenous cytokine independent proliferation and their constitutively high NF-kappaB expression presumes cancerous properties observed in gliomas. In addition, this study might add a novel mechanism for detecting oncogenic transformation in therapeutic stem cell cultures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Several lines of evidence suggest that the dietary isoflavone genistein (Gen) has beneficial effects with regard to cardiovascular disease and in particular on aspects related to blood pressure and angiogenesis. The biological action of Gen may be, at Least in part, attributed to its ability to affect cell signalling and response. However, so far, most of the molecular mechanisms underlying the activity of Gen in the endothelium are unknown. Methods and results: To examine the transcriptional response to 2.5 mu M Gen on primary human endothelial cells (HUVEC), we applied cDNA array technology both under baseline condition and after treatment with the pro-atherogenic stimulus, copper-oxidized LDL. The alteration of the expression patterns of individual transcripts was substantiated using either RT-PCR or Northern blotting. Gen significantly affected the expression of genes encoding for proteins centrally involved in the vascular tone such as endothelin-converting enzyme-1, endothetin-2, estrogen related receptor a and atria[ natriuretic peptide receptor A precursor. Furthermore, Gen countered the effect of oxLDL on mRNA levels encoding for vascular endothelial growth factor receptor 165, types 1 and 2. Conclusions: Our data indicate that physiologically achievable levels of Gen change the expression of mRNA encoding for proteins involved in the control of blood pressure under baseline conditions and reduce the angiogenic response to oxLDL in the endothelium. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maximally effective concentrations of endothelin-1 (ET-1), acidic FGF (aFGF), or 12-O-tetradecanoylphorbol-13-acetate (TPA) activated mitogen-activated protein kinase (MAPK) by 3-4-fold in crude extracts of myocytes cultured from neonatal rat heart ventricles. Maximal activation was achieved after 5 min. Thereafter, MAPK activity stimulated by ET-1 or aFGF declined to control values within 1-2 h, whereas activation by TPA was more sustained. Two peaks of MAPK activity (a 42- and a 44-kDa MAPK) were resolved in cells exposed to ET-1 or aFGF by fast protein liquid chromatography on a Mono Q column. One major and one minor peak of MAPK kinase (MAPKK) was stimulated by ET-1 or aFGF. Cardiac myocytes expressed protein kinase C (PKC)-alpha, -delta, -epsilon and -zeta as shown immunoblotting. Exposure to 1 microM TPA for 24 h down-regulated PKC-alpha, -delta, and -epsilon, but not PKC-zeta. This maneuver wholly abolished the activation of MAPK on re-exposure to TPA but did not affect the response to aFGF. The effect of ET-1 was partially down-regulated. ET-1 stimulated phospho[3H]inositide hydrolysis 18-fold, whereas aFGF stimulated by only 30%. Agonists which initially utilize dissimilar signaling pathways may therefore converge at the level of MAPKK/MAPK and this may be relevant to the hypertrophic response of the heart.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extracellular signal-regulated kinases 1/2 (ERK1/2) are activated in cardiomyocytes by Gq protein-coupled receptors and are associated with induction of hypertrophy. Here, we demonstrate that, in primary cardiomyocyte cultures, ERK1/2 were also significantly activated by platelet-derived growth factor (PDGF), epidermal growth factor (EGF) or fibroblast growth factor (FGF), but insulin, insulin-like growth factor 1 (IGF-1) and nerve growth factor (NGF) had relatively minor effects. PDGF, EGF or FGF increased cardiomyocyte size via ERK1/2, whereas insulin, IGF-1 or NGF had no effect suggesting minimum thresholds/durations of ERK1/2 signaling are required for the morphological changes associated with hypertrophy. Peptide growth factors are widely accepted to activate phospholipase C gamma1 (PLCgamma1) and protein kinase C (PKC). In cardiomyocytes, only PDGF stimulated tyrosine phosphorylation of PLCgamma1 and nPKCdelta. Furthermore, activation of ERK1/2 by PDGF, but not EGF, required PKC activity. In contrast, EGF substantially increased Ras.GTP with rapid activation of c-Raf, whereas stimulation of Ras.GTP loading by PDGF was minimal and activation of c-Raf was delayed. Our data provide clear evidence for differential coupling of PDGF and EGF receptors to the ERK1/2 cascade, and indicate that a minimum threshold/duration of ERK1/2 signaling is required for the development of cardiomyocyte hypertrophy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial resistance to antibiotics poses a serious health threat. Since research into new antibiotics is not progressing at the same rate as the development of bacterial resistance, widespread calls for alternatives to antibiotics have been made. Phage therapy is an ideal alternative candidate to be investigated. However the success of phage therapy may be hampered by a lack of investment support from large pharmaceutical companies, due to their narrow spectrum of activity in antibiotics, very large costs associated with clinical trials of the variety of phages needed, and regulatory requirements remaining unclear. Intellectual property is difficult to secure for therapeutic phage products for a variety of reasons, and patenting procedures vary widely between the US and the EU. Consequently, companies are more likely to invest in phage products for decontamination or veterinary use, rather than clinical use in humans. Some still raise questions as to the safety of phage therapy overall, suggesting the possibility of cytotoxicity and immunogenicity, depending on the phage preparation and route. On the other hand, with patients dying because of infections untreatable with conventional antibiotics, the question arises as to whether it is ethical not to pursue phage therapy more diligently. A paradigm shift about how phage therapy is perceived is required, as well as more rigorous proof of efficacy in the form of clinical trials of existing medicinal phage products. Phage therapy potential may be fulfilled in the meantime by allowing individual preparations to be used on a named-patient basis, with extensive monitoring and multidisciplinary team input. The National Health Service and academia have a role in carrying out clinical phage research, which would be beneficial to public health, but not necessarily financially rewarding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regeneration of periodontal tissues aims to utilize tissue engineering techniques to restore lost periodontal tissues including the cementum, periodontal ligament and alveolar bone. Regenerative dentistry and its special field regenerative periodontology represent relatively new and emerging branches of translational stem cell biology and regenerative medicine focusing on replacing and regenerating dental tissues to restore or re-establish their normal function lost during degenerative diseases or acute lesions. The regeneration itself can be achieved through transplantation of autologous or allogenic stem cells, or by improving the tissue self-repair mechanisms (e.g. by application of growth factors). In addition, a combination of stem cells or stem cell-containing tissue with bone implants can be used to improve tissue integration and the clinical outcome. As the oral cavity represents a complex system consisting of teeth, bone, soft tissues and sensory nerves, regenerative periodontology relies on the use of stem cells with relatively high developmental potential. Notably, the potential use of pluripotent stem cell types such as human embryonic stem cells or induced pluripotent stem cells is still aggravated by ethical and practical problems. Thus, other cellular sources such as those readily available in the postnatal craniofacial area and particularly in oral structures offer a much better and realistic alternative as cellular regenerative sources. In this review, we summarize current knowledge on the oral neural crest-derived stem cell populations (oNCSCs) and discuss their potential in regenerative periodontology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidative modification of low-density lipoprotein (LDL) plays an important role in the initiation and progression of atherosclerosis. It has been proposed that the biological action of oxidized LDL (ox-LDL) may be partially attributed to its effect on a shift of the pattern of gene expression in endothelial cells. To examine the transcriptional response to ox-LDL, we applied cDNA array technology to cultured primary human endothelial cells challenged with oxidized human LDL. A twofold or greater difference in the expression of a particular gene was considered a significant difference in transcript abundance. Seventy-eight of the 588 genes analyzed were differentially expressed in response to the treatment. Ox-LDL significantly affected the expression of genes encoding for transcription factors, cell receptors, growth factors, adhesion molecules, extracellular matrix proteins, and enzymes involved in cholesterol metabolism. The alteration of the expression pattern of several genes was substantiated post hoc using RT-PCR. The experimental strategy identified several novel ox-LDL-sensitive genes associated with a "response to injury" providing a conceptual background to be utilized for future studies addressing the molecular basis of the early stages of atherogenesis.