11 resultados para Resistance mutation

em CentAUR: Central Archive University of Reading - UK


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A sample of 10 Norway rats (Rattus norvegicus) was taken for DNA resistance testing from an agricultural site in Kent where applications of the anticoagulant rodenticide bromadiolone had been unsuccessful. All animals tested were homozygous for the single nucleotide VKORC1 polymorphism tyrosine139phenylalanine, or Y139F. This is a common resistance mutation found extensively in France and Belgium but not previously in the UK. Y139F confers a significant level of resistance to first-generation anticoagulants, such as chlorophacinone, and to the second-generation compound bromadiolone. Another compound widely used in the UK, difenacoum, is also thought to be partially resisted by rats which carry Y139F. A silent VKORC1 mutation was also found in all rats tested. The presence of a third important VKORC1 mutation which confers resistance to anticoagulant rodenticides in widespread use in the UK, the others being Y139C and L120Q, further threatens the ability of pest control practitioners to deliver effective rodent control.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: The single nucleotide polymorphism (SNP), and consequent amino acid exchange from tyrosine to cysteine at location 139 of the vkorc1 gene (i.e. tyrosine139cysteine or Y139C), is the most widespread anticoagulant resistance mutation in Norway rats (Rattus norvegicus Berk.) in Europe. Field trials were conducted to determine incidence of the Y139C SNP at two rat infested farms in Westphalia, Germany, and to estimate the practical efficacy against them of applications, using a pulsed baiting treatment regime, of a proprietary bait (KleratTM) containing 50 ppm brodifacoum. RESULTS: DNA analysis for the Y139C mutation showed that resistant rats were prevalent at the two farms, with an incidence of 80.0% and 78.6% respectively. Applications of brodifacoum bait achieved results of 99.2% and 100.0% control at the two farms, when measured by census baiting, although the treatment was somewhat prolonged at one site due to the abundance of attractive alternative food. CONCLUSION: The study showed that 50 ppm brodifacoum bait is fully effective against the Y139C SNP at the Münsterland focus and is likely to be so elsewhere in Europe where this mutation is found. The pulsed baiting regime reduced to relatively low levels the quantity of bait required to control these two substantial resistant Norway rat infestations. Previous studies had shown much larger quantities of bromadiolone and difenacoum baits used in ineffective treatments against Y139C resistant rats in the Münsterland. These results should be considered when making decisions about the use of anticoagulant against resistant Norway rats and their potential environmental impacts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction: Resistance to anticoagulants in Norway rats (Rattus norvegicus) and house mice (Mus domesticus) has been studied in the UK since the early 1960s. In no other country in the world is our understanding of resistance phenomena so extensive and profound. Almost every aspect of resistance in the key rodent target species has been examined in laboratory and field trials and results obtained by independent researchers have been published. It is the principal purpose of this document to present a short synopsis of this information. More recently, however, the development of genetical techniques has provided a definitive means of detection of resistant genotypes among pest rodent populations. Preliminary information from a number of such surveys will also be presented. Resistance in Norway rats: A total of nine different anticoagulant resistance mutations (single nucleotide polymorphisms or SNPs) are found among Norway rats in the UK. In no other country worldwide are present so many different forms of Norway rat resistance. Among these nine SNPs, five are known to confer on rats that carry them a significant degree of resistance to anticoagulant rodenticides. These mutations are: L128Q, Y139S, L120Q, Y139C and Y139F. The latter three mutations confer, to varying degrees, practical resistance to bromadiolone and difenacoum, the two second-generation anticoagulants in predominant use in the UK. It is the recommendation of RRAG that bromadiolone and difenacoum should not be used against rats carrying the L120Q, Y139C and Y139F mutations because this will promote the spread of resistance and jeopardise the long-term efficacy of anticoagulants. Brodifacoum, flocoumafen and difethialone are effective against these three genotypes but cannot presently be used because of the regulatory restriction that they can only be applied against rats that are living and feeding predominantly indoors. Our understanding of the geographical distribution of Norway rat resistance in incomplete but is rapidly increasing. In particular, the mapping of the focus of L120Q Norway rat resistance in central-southern England by DNA sequencing is well advanced. We now know that rats carrying this resistance mutation are present across a large part of the counties of Hampshire, Berkshire and Wiltshire, and the resistance spreads into Avon, Oxfordshire and Surrey. It is also found, perhaps as outlier foci, in south-west Scotland and East Sussex. L120Q is currently the most severe form of anticoagulant resistance found in Norway rats and is prevalent over a considerable part of central-southern England. A second form of advanced Norway rat resistance is conferred by the Y139C mutation. This is noteworthy because it occurs in at least four different foci that are widely geographically dispersed, namely in Dumfries and Galloway, Gloucestershire, Yorkshire and Norfolk. Once again, bromadiolone and difenacoum are not recommended for use against rats carrying this genotype and a concern of RRAG is that continued applications of resisted active substances may result in Y139C becoming more or less ubiquitous across much of the UK. Another type of advanced resistance, the Y139F mutation, is present in Kent and Sussex. This means that Norway rats, carrying some degree of resistance to bromadiolone and difenacoum, are now found from the south coast of Kent, west into the city of Bristol, to Yorkshire in the north-east and to the south-west of Scotland. This difficult situation can only deteriorate further where these three genotypes exist and resisted anticoagulants are predominantly used against them. Resistance in house mice: House mouse is not so well understood but the presence in the UK of two resistant genotypes, L128S and Y139C, is confirmed. House mice are naturally tolerant to anticoagulants and such is the nature of this tolerance, and the presence of genetical resistance, that house mice resistant to the first-generation anticoagulants are considered to be widespread in the UK. Consequently, baits containing warfarin, sodium warfarin, chlorophacinone and coumatetralyl are not approved for use against mice. This regulatory position is endorsed by RRAG. Baits containing brodifacoum, flocoumafen and difethialone are effective against house mice and may be applied in practice because house mouse infestations are predominantly indoors. There are some reports of resistance among mice in some areas to the second-generation anticoagulant bromadiolone, while difenacoum remains largely efficacious. Alternatives to anticoagulants: The use of habitat manipulation, that is the removal of harbourage, denial of the availability of food and the prevention of ingress to structures, is an essential component of sustainable rodent pest management. All are of importance in the management of resistant rodents and have the advantage of not selecting for resistant genotypes. The use of these techniques may be particularly valuable in preventing the build-up of rat infestations. However, none can be used to remove any sizeable extant rat infestation and for practical reasons their use against house mice is problematic. Few alternative chemical interventions are available in the European Union because of the removal from the market of zinc phosphide, calciferol and bromethalin. Our virtual complete reliance on the use of anticoagulants for the chemical control of rodents in the UK, and more widely in the EU, calls for improved schemes for resistance management. Of course, these might involve the use of alternatives to anticoagulant rodenticides. Also important is an increasing knowledge of the distribution of resistance mutations in rats and mice and the use of only fully effective anticoagulants against them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives and methods: An influenza B virus plasmid-based rescue system was used to introduce site-specific mutations, previously observed in neuraminidase (NA) inhibitor-resistant viruses, into the NA protein of six recombinant viruses. Three mutations observed only among in vitro selected zanamivir-resistant influenza A mutants were introduced into the B/Beijing/1/87 virus NA protein, to change residue E116 to glycine, alanine or aspartic acid. Residue E116 was also mutated to valine, a mutation found in the clinic among oseltamivir-resistant viruses. An arginine to lysine change at position 291 (292 N2 numbering) mimicked that seen frequently in influenza A N2 clinical isolates resistant to oseltamivir. Similarly, an arginine to lysine change at position 149 (152 in N2 numbering) was made to reproduce the change found in the only reported zanamivir-resistant clinical isolate of influenza B virus. In vitro selection and prolonged treatment in the clinic leads to resistance pathways that require compensatory mutations in the haemagglutinin gene, but these appear not to be important for mutants isolated from immunocompetent patients. The reverse genetics system was therefore used to generate mutants containing only the NA mutation. Results and conclusions: With the exception of a virus containing the E116G mutation, mutant viruses were attenuated to different levels in comparison with wild-type virus. This attenuation was a result of altered NA activity or stability depending on the introduced mutation. Mutant viruses displayed increased resistance to zanamivir, oseltamivir and peramivir, with certain viruses displaying cross-resistance to all three drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anticoagulant compounds, i.e., derivatives of either 4-hydroxycoumarin (e.g., warfarin, bromadiolone) or indane-1,3-dione (e.g., diphacinone, chlorophacinone), have been in worldwide use as rodenticides for > 50 years. These compounds inhibit blood coagulation by repression of the vitamin K reductase reaction (VKOR). Anticoagulant-resistant rodent populations have been reported from many countries and pose a considerable problem for pest control. Resistance is transmitted as an autosomal dominant trait although, until recently, the basic genetic mutation was unknown. Here, we report on the identification of eight different mutations in the VKORC1 gene in resistant laboratory strains of brown rats and house mice and in wild-caught brown rats from various locations in Europe with five of these mutations affecting only two amino acids (Tyr139Cys, Tyr139Ser, Tyr139Phe and Leu128Gln, Leu128Ser). By recombinant expression of VKORC1 constructs in HEK293 cells we demonstrate that mutations at Tyr139 confer resistance to warlarin at variable degrees while the other mutations, in addition, dramatically reduce VKOR activity. Our data strongly argue for at least seven independent mutation events in brown rats and two in mice. They suggest that mutations in VKORC1 are the genetic basis of anticoagulant resistance in wild populations of rodents, although the mutations alone do not explain all aspects of resistance that have been reported. We hypothesize that these mutations, apart from generating structural changes in the VKORC1 protein, may induce compensatory mechanisms to maintain blood clotting. Our findings provide the basis for a DNA-based field monitoring of anticoagulant resistance in rodents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reviews the evidence relating to the question: does the risk of fungicide resistance increase or decrease with dose? The development of fungicide resistance progresses through three key phases. During the ‘emergence phase’ the resistant strain has to arise through mutation and invasion. During the subsequent ‘selection phase’, the resistant strain is present in the pathogen population and the fraction of the pathogen population carrying the resistance increases due to the selection pressure caused by the fungicide. During the final phase of ‘adjustment’, the dose or choice of fungicide may need to be changed to maintain effective control over a pathogen population where resistance has developed to intermediate levels. Emergence phase: no experimental publications and only one model study report on the emergence phase, and we conclude that work in this area is needed. Selection phase: all the published experimental work, and virtually all model studies, relate to the selection phase. Seven peer reviewed and four non-peer reviewed publications report experimental evidence. All show increased selection for fungicide resistance with increased fungicide dose, except for one peer reviewed publication that does not detect any selection irrespective of dose and one conference proceedings publication which claims evidence for increased selection at a lower dose. In the mathematical models published, no evidence has been found that a lower dose could lead to a higher risk of fungicide resistance selection. We discuss areas of the dose rate debate that need further study. These include further work on pathogen-fungicide combinations where the pathogen develops partial resistance to the fungicide and work on the emergence phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A LightCycler-based PCR-hybridization gyrA mutation assay (GAMA) was developed to rapidly detect gyrA point mutations in multiresistant (MR) Salmonella enterica serotype Typhimurium DT104 with decreased susceptibility to ciprofloxacin (MIC, 0.25 to 1.0 mg/liter). Ninety-two isolates (49 human, 43 animal) were tested with three individual oligonucleotide probes directed against an Asp-87-to-Asn (GAC --> AAC) mutation, an Asp-87-to-Gly (GAC --> GGC) mutation, and a Ser-83-to-Phe (TCC --> TTC) mutation. Strains homologous to the probes could be distinguished from strains that had different mutations by their probe-target melting temperatures. Thirty-seven human and 30 animal isolates had an Asp-87-to-Asn substitution, 6 human and 6 animal isolates had a Ser-83-to-Phe substitution, and 5 human and 2 animal isolates had an Asp-87-to-Gly substitution. The remaining six strains all had mismatches with the three probes and therefore different gyrA mutations. The sequencing of gyrA from these six isolates showed that one human strain and two animal strains had an Asp-87-to-Tyr (GAC --> TAC) substitution and two animal strains had a Ser-83-to-Tyr (TCC --> TAC) substitution. One animal strain had no gyrA mutation, suggesting that this isolate had a different mechanism of resistance. Fifty-eight of the strains tested were indistinguishable by several different typing methods including antibiograms, pulsed-field gel gel electrophoresis, and plasmid profiling, although they could be further subdivided according to gyrA mutation. This study confirmed that MR DT104 with decreased susceptibility to ciprofloxacin from humans and food animals in England and Wales may have arisen independently against a background of clonal spread of MR DT104.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The effect of a single 5 day enrofloxacin treatment on the native Campylobacter coli population in conventionally weaned 5-week-old pigs was investigated. Materials: Twelve pigs were split into two groups of six: one group was treated with a therapeutic dose (15 mg/pig/day) of enrofloxacin and the other remained untreated to act as the control. Campylobacter coli were isolated from faecal samples and tested for ciprofloxacin resistance by measuring MIC values. Mutations in the quinolone resistance-determining region (QRDR) of the gyrA gene of resistant isolates were identified by sequencing and denaturing HPLC. Levels of enrofloxacin and its primary metabolite ciprofloxacin in the pig faeces were also measured by HPLC. Results: No quinolone-resistant C. coli (n = 867) were detected in any of the pigs prior to treatment, indicating <0.1% resistance in the group. Resistant C. coli were isolated from pigs for up to 35 days after treatment with a therapeutic dose. These resistant C. coli had MIC values of 128 mg/L and 8-16 mg/L for nalidixic acid and ciprofloxacin, respectively, and the same single point mutation causing a Thr-86 to Ile substitution in the QRDR was identified in each. The concentration of enrofloxacin in the pig faeces was 2-4 mug/g faeces for the duration of the 5 day therapeutic treatment and was detected up to 10 days post-treatment. Ciprofloxacin was also measured and peaked at 0.6 mug/g faeces in the treated group. Conclusion: This study provides evidence that a single course of enrofloxacin treatment contributes directly to the emergence and persistence of fluoroquinolone resistance in C. coli.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salmonella enterica isolates (n = 182) were examined for mutations in the quinolone resistance-determining region of gyrA, gyrB, parC, and parE. The frequency, location, and type of GyrA substitution varied with the serovar. Mutations were found in parC that encoded Thr57-Ser, Thr66-Ile, and Ser80-Arg substitutions. Mutations in the gyrB quinolone resistance-determining region were located at codon Tyr420-Cys or Arg437-Len. Novel mutations were also found in parE encoding Glu453-Gly, His461-Tyr, Ala498-Thr, Val512-Gly, and Ser518-Cys. Although it is counterintuitive, isolates with a mutation in both gyrA and parC were more susceptible to ciprofloxacin than were isolates with a mutation in gyrA alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An efflux system, CmeABC, in Campylobacter jejuni was previously described, and a second efflux system, CmeDEF, has now been identified. The substrates of CmeDEF include ampicillin, ethidium bromide, acridine, sodium dodecyl sulfate (SDS), deoxycholate, triclosan, and cetrimide, but not ciprofloxacin or erythromycin. C. jejuni NCTC11168 and two efflux pump knockout strains, cmeB::Kan(r) and cmeF::Kan(r), were exposed to 0.5 to 1 mu g of ciprofloxacin/ml in agar plates. All mutants arising from NCTC11168 were resistant to ciprofloxacin but not to other agents and contained a mutation resulting in the replacement of threonine 86 with isoleucine in the quinolone resistance-determining region of GyrA. Mutants with two distinct phenotypes were selected from the efflux pump knockout strains. Mutants with the first phenotype were resistant to ciprofloxacin only and had the same substitution within GyrA as the NCTC11168-derived mutants. Irrespective of the parent strain, mutants with the second phenotype were resistant to ciprofloxacin, chloramphenicol, tetracycline, ethidium bromide, acridine orange, and SDS and had no mutation in gyrA. These mutants expressed levels of the efflux pump genes cmeB and cmeF and the major outer membrane protein gene porA similar to those expressed by the respective parent strains. No mutations were detected in cmeF or cmeB. Accumulation assays revealed that the mutants accumulated lower concentrations of drug. These data suggest the involvement of a non-CmeB or -CmeF efflux pump or reduced uptake conferring multiple-antibiotic resistance, which can be selected after exposure to a fluoroquinolone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evolution of resistance to drugs and pesticides poses a serious threat to human health and agricultural production. CYP51 encodes the target site of azole fungicides, widely used clinically and in agriculture. Azole resistance can evolve due to point mutations or overexpression of CYP51, and previous studies have shown that fungicide-resistant alleles have arisen by de novo mutation. Paralogs CYP51A and CYP51B are found in filamentous ascomycetes, but CYP51A has been lost from multiple lineages. Here, we show that in the barley pathogen Rhynchosporium commune, re-emergence of CYP51A constitutes a novel mechanism for the evolution of resistance to azoles. Pyrosequencing analysis of historical barley leaf samples from a unique long-term experiment from 1892 to 2008 indicates that the majority of the R. commune population lacked CYP51A until 1985, after which the frequency of CYP51A rapidly increased. Functional analysis demonstrates that CYP51A retains the same substrate as CYP51B, but with different transcriptional regulation. Phylogenetic analyses show that the origin of CYP51A far predates azole use, and newly sequenced Rhynchosporium genomes show CYP51A persisting in the R. commune lineage rather than being regained by horizontal gene transfer; therefore, CYP51A re-emergence provides an example of adaptation to novel compounds by selection from standing genetic variation.