58 resultados para PPAR-gamma - Agonists

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidized low-density lipoprotein (oxLDL) exhibits many atherogenic effects, including the promotion of monocyte recruitment to the arterial endothelium and the induction of scavenger receptor expression. However, while atherosclerosis involves chronic inflammation within the arterial intima, it is unclear whether oxLDL alone provides a direct inflammatory stimulus for monocyte-macrophages. Furthermore, oxLDL is not a single, well-defined entity, but has structural and physical properties which vary according to the degree of oxidation. We tested the hypothesis that the biological effects of oxLDL will vary according to its degree of oxidation and that some species of oxLDL will have atherogenic properties, while other species may be responsible for its inflammatory activity. The atherogenic and inflammatory properties of LDL oxidized to predetermined degrees (mild, moderate and extensive oxidation) were investigated in a single system using human monocyte-derived macrophages. Expression of CD36 mRNA was up-regulated by mildly- and moderately-oxLDL, but not highly-oxLDL. The expression of the transcription factor, proliferator-activated receptor-gamma (PPARgamma), which has been proposed to positively regulate the expression of CD36, was increased to the greatest degree by highly-oxLDL. However, the DNA binding activity of PPARgamma was increased only by mildly- and moderately-oxLDL. None of the oxLDL species appeared to be pro-inflammatory towards monocytes, either directly or indirectly through mediators derived from lymphocytes, regardless of the degree of oxidation. (C) 2003 Published by Elsevier Science Ireland Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Peroxisome proliferator-activated receptor-(gamma) (PPAR(gamma)) is expressed in human platelets although in the absence of genomic regulation in these cells, its functions are unclear. OBJECTIVE: In the present study, we aimed to demonstrate the ability of PPAR(gamma) ligands to modulate collagen-stimulated platelet function and suppress activation of the glycoprotein VI (GPVI) signaling pathway. METHODS: Washed platelets were stimulated with PPAR(gamma) ligands in the presence and absence of PPAR(gamma) antagonist GW9662 and collagen-induced aggregation was measured using optical aggregometry. Calcium levels were measured by spectrofluorimetry in Fura-2AM-loaded platelets and tyrosine phosphorylation levels of receptor-proximal components of the GPVI signaling pathway were measured using immunoblot analysis. The role of PPAR(gamma) agonists in thrombus formation was assessed using an in vitro model of thrombus formation under arterial flow conditions. RESULTS: PPAR(gamma) ligands inhibited collagen-stimulated platelet aggregation that was accompanied by a reduction in intracellular calcium mobilization and P-selectin exposure. PPAR(gamma) ligands inhibited thrombus formation under arterial flow conditions. The incorporation of GW9662 reversed the inhibitory actions of PPAR(gamma) agonists, implicating PPAR(gamma) in the effects observed. Furthermore, PPAR(gamma) ligands were found to inhibit tyrosine phosphorylation levels of multiple components of the GPVI signaling pathway. PPAR(gamma) was found to associate with Syk and LAT after platelet activation. This association was prevented by PPAR(gamma) agonists, indicating a potential mechanism for PPAR(gamma) function in collagen-stimulated platelet activation. CONCLUSIONS: PPAR(gamma) agonists inhibit the activation of collagen-stimulation of platelet function through modulation of early GPVI signalling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Retinoid X receptors (RXRs) are important transcriptional nuclear hormone receptors, acting as either homodimers or the binding partner for at least one fourth of all the known human nuclear receptors. Functional nongenomic effects of nuclear receptors are poorly understood; however, recently peroxisome proliferator-activated receptor (PPAR) gamma, PPARbeta, and the glucocorticoid receptor have all been found active in human platelets. Human platelets express RXRalpha and RXRbeta. RXR ligands inhibit platelet aggregation and TXA(2) release to ADP and the TXA(2) receptors, but only weakly to collagen. ADP and TXA(2) both signal via the G protein, Gq. RXR rapidly binds Gq but not Gi/z/o/t/gust in a ligand-dependent manner and inhibits Gq-induced Rac activation and intracellular calcium release. We propose that RXR ligands may have beneficial clinical actions through inhibition of platelet activation. Furthermore, our results demonstrate a novel nongenomic mode for nuclear receptor action and a functional cross-talk between G-protein and nuclear receptor signaling families.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Retinoid X receptors (RXRs) are important transcriptional nuclear hormone receptors, acting as either homodimers or the binding partner for at least one fourth of all the known human nuclear receptors. Functional nongenomic effects of nuclear receptors are poorly understood; however, recently peroxisome proliferator-activated receptor (PPAR) gamma, PPAR beta, and the glucocorticoid receptor have all been found active in human platelets. Human platelets express RXR alpha, and RXR beta. RXR ligands inhibit platelet aggregation and TXA(2) release to ADP and the TXA(2) receptors, but only weakly to collagen. ADP and TXA(2) both signal via the G protein, Gq. RXR rapidly binds Gq but not Gi/z/o/t/gust in a ligand-dependent manner and inhibits Gq-induced Rac activation and intracellular calcium release. We propose that RXR ligands may have beneficial clinical actions through inhibition of platelet activation. Furthermore, our results demonstrate a novel nongenomic mode for nuclear receptor action and a functional cross-talk between G-protein and nuclear receptor signaling families. (C) 2007 by The American Society of Hematology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CD36 is an important scavenger receptor mediating uptake of oxidized low- density lipoproteins ( oxLDLs) and plays a key role in foam cell formation and the pathogenesis of atherosclerosis. We report the first evidence that the transcription factor Nrf2 is expressed in vascular smooth muscle cells, and demonstrate that oxLDLs cause nuclear accumulation of Nrf2 in murine macrophages, resulting in the activation of genes encoding CD36 and the stress proteins A170, heme oxygenase- 1 ( HO- 1), and peroxiredoxin I ( Prx I). 4- Hydroxy- 2- nonenal ( HNE), derived from lipid peroxidation, was one of the most effective activators of Nrf2. Using Nrf2- deficient macrophages, we established that Nrf2 partially regulates CD36 expression in response to oxLDLs, HNE, or the electrophilic agent diethylmaleate. In murine aortic smooth muscle cells, expressing negligible levels of CD36, both moderately and highly oxidized LDL caused only limited Nrf2 translocation and negligible increases in A170, HO- 1, and Prx I expression. However, treatment of smooth muscle cells with HNE significantly enhanced nuclear accumulation of Nrf2 and increased A170, HO- 1, and Prx I protein levels. Because PPAR-gamma can be activated by oxLDLs and controls expression of CD36 in macrophages, our results implicate Nrf2 as a second important transcription factor involved in the induction of the scavenger receptor CD36 and antioxidant stress genes in atherosclerosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CVD is a common killer in both the Western world and the developing world. It is a multifactorial disease that is influenced by many environmental and genetic factors. Although public health advice to date has been principally in the form of prescribed population-based recommendations, this approach has been surprisingly unsuccessful in reducing CVD risk. This outcome may be explained, in part, by the extreme variability in response to dietary manipulations between individuals and interactions between diet and an individual's genetic background, which are defined by the term 'nutrigenetics'. The shift towards personalised nutritional advice is a very attractive proposition. In principle an individual could be genotyped and given dietary advice specifically tailored to their genetic make-up. Evidence-based research into interactions between fixed genetic variants, nutrient intake and biomarkers of CVD risk is increasing, but still limited. The present paper will review the evidence for interactions between dietary fat and three common polymorphisms in the apoE, apoAI and PPAR gamma genes. Increased knowledge of how these and other genes influence dietary response should increase the understanding of personalised nutrition. While targeted dietary advice may have considerable potential for reducing CVD risk, the ethical issues associated with its routine use need careful consideration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: To determine whether the peroxisome proliferator-activated receptor (PPAR)-gamma Pro12ala polymorphism modulates susceptibility to diabetes in South Asians. RESEARCH DESIGN AND METHODS: South Asians (n = 697) and Caucasians (n = 457) living in Dallas/Forth Worth, Texas, and South Asians living in Chennai, India (n = 1,619), were enrolled for this study. PPAR-gamma Pro12Ala was determined using restriction fragment-length polymorphism. Insulin responsiveness to an oral glucose tolerance test (OGTT) was measured in nondiabetic subjects. RESULTS: The Caucasian diabetic subjects had significantly lower prevalence of PPAR-gamma 12Ala when compared with the Caucasian nondiabetic subjects (20 vs. 9%, P = 0.006). However, there were no significant differences between diabetic and nondiabetic subjects with reference to the Pro12Ala polymorphism among the South Asians living in Dallas (20 vs. 23%) and in India (19 vs. 19.3%). Although Caucasians carrying PPAR-gamma Pro12Ala had lower plasma insulin levels at 2 h of OGTT than the wild-type (Pro/Pro) carriers (76 +/- 68 and 54 +/- 33 microU/ml, respectively, P = 0.01), no differences in either fasting or 2-h plasma insulin concentrations were found between South Asians carrying the PPAR-gamma Pro12Ala polymorphism and those with the wild-type genotype at either Chennai or Dallas. CONCLUSIONS: Although further replication studies are necessary to test the validity of the described genotype-phenotype relationship, our study supports the hypothesis that the PPAR-gamma Pro12Ala polymorphism is protective against diabetes in Caucasians but not in South Asians.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and purpose: Low efficacy partial agonists at the D-2 dopamine receptor may be useful for treating schizophrenia. In this report we describe a method for assessing the efficacy of these compounds based on stimulation of [S-35]GTP gamma S binding. Experimental approach: Agonist efficacy was assessed from [S-35]GTP gamma S binding to membranes of CHO cells expressing D2 dopamine receptors in buffers with and without Na+. Effects of Na+ on receptor/G protein coupling were assessed using agonist/[H-3] spiperone competition binding assays. Key results: When [S-35]GTP gamma S binding assays were performed in buffers containing Na+, some agonists (aripiprazole, AJ-76, UH-232) exhibited very low efficacy whereas other agonists exhibited measurable efficacy. When Na+ was substituted by N-methyl D-glucamine, the efficacy of all agonists increased (relative to that of dopamine) but particularly for aripiprazole, aplindore, AJ-76, (-)-3-PPP and UH-232. In ligand binding assays, substitution of Na+ by N-methyl D-glucamine increased receptor/G protein coupling for some agonists -. aplindore, dopamine and (-)-3-PPP-but for aripiprazole, AJ-76 and UH-232 there was little effect on receptor/G protein coupling. Conclusions and implications: Substitution of Na+ by NMDG increases sensitivity in [S-35] GTPgS binding assays so that very low efficacy agonists were detected clearly. For some agonists the effect seems to be mediated via enhanced receptor/G protein coupling whereas for others the effect is mediated at another point in the G protein activation cycle. AJ-76, aripiprazole and UH-232 seem particularly sensitive to this change in assay conditions. This work provides a new method to discover these very low efficacy agonists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Doxorubicin is effective against breast cancer, but its major side effect is cardiotoxicity. The aim of this study was to determine whether the efficacy of doxorubicin on cancer cells could be increased in combination with PPARγ agonists or chrono-optimization by exploiting the diurnal cycle. We determined cell toxicity using MCF-7 cancer cells, neonatal rat cardiac myocytes and fibroblasts in this study. Doxorubicin damages the contractile filaments of cardiac myocytes and affects cardiac fibroblasts by significantly inhibiting collagen production and proliferation at the level of the cell cycle. Cyclin D1 protein levels decreased significantly following doxorubicin treatment indicative of a G1 /S arrest. PPARγ agonists with doxorubicin increased the toxicity to MCF-7 cancer cells without affecting cardiac cells. Rosiglitazone and ciglitazone both enhanced anti-cancer activity when combined with doxorubicin (e.g. 50% cell death for doxorubicin at 0.1 μM compared to 80% cell death when combined with rosiglitazone). Thus, the therapeutic dose of doxorubicin could be reduced by 20-fold through combination with the PPARγ agonists, thereby reducing adverse effects on the heart. The presence of melatonin also significantly increased doxorubicin toxicity, in cardiac fibroblasts (1 μM melatonin) but not in MCF-7 cells. Our data show, for the first time, that circadian rhythms play an important role in doxorubicin toxicity in the myocardium; doxorubicin should be administered mid-morning, when circulating levels of melatonin are low, and in combination with rosiglitazone to increase therapeutic efficacy in cancer cells while reducing the toxic effects on the heart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spontaneous mutants of Rhizobium leguminosarum bv. viciae 3841 were isolated that grow faster than the wild type on gamma-aminobutyric acid (GABA) as the sole carbon and nitrogen source. These strains (RU1736 and RU1816) have frameshift mutations (gtsR101 and gtsR102, respectively) in a GntR-type regulator (GtsR) that result in a high rate of constitutive GABA transport. Tn5 mutagenesis and quantitative reverse transcription-PCR showed that GstR regulates expression of a large operon (pRL100242 to pRL100252) on the Sym plasmid that is required for GABA uptake. An ABC transport system, GtsABCD (for GABA transport system) (pRL100248-51), of the spermidine/putrescine family is part of this operon. GtsA is a periplasmic binding protein, GtsB and GtsC are integral membrane proteins, and GtsD is an ATP-binding subunit. Expression of gtsABCD from a lacZ promoter confirmed that it alone is responsible for high rates of GABA transport, enabling rapid growth of strain 3841 on GABA. Gts transports open-chain compounds with four or five carbon atoms with carboxyl and amino groups at, or close to, opposite termini. However, aromatic compounds with similar spacing between carboxyl and amino groups are excellent inhibitors of GABA uptake so they may also be transported. In addition to the ABC transporter, the operon contains two putative mono-oxygenases, a putative hydrolase, a putative aldehyde dehydrogenase, and a succinate semialdehyde dehydrogenase. This suggests the operon may be involved in the transport and breakdown of a more complex precursor to GABA. Gts is not expressed in pea bacteroids, and gtsB mutants are unaltered in their symbiotic phenotype, suggesting that Bra is the only GABA transport system available for amino acid cycling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lys-gamma 3-MSH is a melanocortin peptide derived from the C-terminal of the 16 kDa fragment of POMC. The physiological role of Lys-gamma 3-MSH is unclear, although it has previously been shown that, although not directly steroidogenic, it can act to potentiate the steroidogenic response of adrenal cortical cells to ACTH. This synergistic effect appears to be correlated with an ability to increase the activity of hormone sensitive lipase (HSL) and therefore the rate of cholesterol ester hydrolysis. Ligand binding studies have suggested that high-affinity binding sites for Lys-gamma 3-MSH exist in the adrenal gland and a number of other rat tissues that express HSL, including adipose, skeletal muscle and testes. To investigate the hypothesis that Lys-gamma 3-MSH may play a wider role in cholesterol and lipid metabolism, we tested the effect of Lys-gamma 3-MSH on lipolysis, an HSL-mediated process, in 3T3-L1 adipocytes. In comparison with other melanocortin peptides, Lys-gamma 3-MSH was found to be a potent stimulator of lipolysis. It was also able to phosphorylate HSL at key serine residues and stimulate the hyper-phosphorylation of perilipin A. The receptor through which the lipolytic actions of Lys-gamma 3-MSH are being mediated is not clear. Attempts to characterise this receptor suggest that either the pharmacology of the melanocortin receptor 5 in 3T3-L1 adipocytes is different from that described when expressed in heterologous systems or the possibility that a further, as yet uncharacterised, receptor exists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alpha-, beta- and gamma-melanocyte stimulating hormones (MSHs) are peptides derived from the ACTH precursor, pro-opiomelanocortin. All three peptides have been highly conserved throughout evolution but their exact biological function in mammals is still largely obscure. In recent years, there has been a surge of interest in alpha-MSH and its role in the regulation of feeding. Gamma-MSH by contrast has been shown to be involved in the regulation of adrenal steroidogenesis and also has effects on the cardiovascular and renal systems. This review will provide an overview of the role that gamma-MSH peptides play in the regulation of adrenal steroidogenesis. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1 Mechanisms of inverse agonist action at the D-2(short) dopamine receptor have been examined. 2 Discrimination of G-protein-coupled and -uncoupled forms of the receptor by inverse agonists was examined in competition ligand-binding studies versus the agonist [H-3]NPA at a concentration labelling both G-protein-coupled and -uncoupled receptors. 3 Competition of inverse agonists versus [H-3] NPA gave data that were fitted best by a two-binding site model in the absence of GTP but by a one-binding site model in the presence of GTP. K-i values were derived from the competition data for binding of the inverse agonists to G-protein-uncoupled and -coupled receptors. K-coupled and K-uncoupled were statistically different for the set of compounds tested ( ANOVA) but the individual values were different in a post hoc test only for (+)-butaclamol. 4 These observations were supported by simulations of these competition experiments according to the extended ternary complex model. 5 Inverse agonist efficacy of the ligands was assessed from their ability to reduce agonist-independent [S-35]GTPγ S binding to varying degrees in concentration-response curves. Inverse agonism by (+)-butaclamol and spiperone occurred at higher potency when GDP was added to assays, whereas the potency of (-)-sulpiride was unaffected. 6 These data show that some inverse agonists ((+)-butaclamol, spiperone) achieve inverse agonism by stabilising the uncoupled form of the receptor at the expense of the coupled form. For other compounds tested, we were unable to define the mechanism.