20 resultados para Neuron-astrocyte trafficking

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Localisation of both viral and cellular proteins to the nucleolus is determined by a variety of factors including nucleolar localisation signals (NoLSs), but how these signals operate is not clearly understood. The nucleolar trafficking of wild type viral proteins and chimeric proteins, which contain altered NoLSs, were compared to investigate the role of NoLSs in dynamic nucleolar trafficking. Three viral proteins from diverse viruses were selected which localised to the nucleolus; the coronavirus infectious bronchitis virus nucleocapsid (N) protein, the herpesvirus saimiri ORF57 protein and the HIV-1 Rev protein. The chimeric proteins were N protein and ORF57 protein which had their own NoLS replaced with those from ORF57 and Rev proteins, respectively. By analysing the sub-cellular localisation and trafficking of these viral proteins and their chimeras within and between nucleoli using confocal microscopy and photo-bleaching we show that NoLSs are responsible for different nucleolar localisations and trafficking rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An information processing paradigm in the brain is proposed, instantiated in an artificial neural network using biologically motivated temporal encoding. The network will locate within the external world stimulus, the target memory, defined by a specific pattern of micro-features. The proposed network is robust and efficient. Akin in operation to the swarm intelligence paradigm, stochastic diffusion search, it will find the best-fit to the memory with linear time complexity. information multiplexing enables neurons to process knowledge as 'tokens' rather than 'types'. The network illustrates possible emergence of cognitive processing from low level interactions such as memory retrieval based on partial matching. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper discusses ensemble behaviour in the Spiking Neuron Stochastic Diffusion Network, SNSDN, a novel network exploring biologically plausible information processing based on higher order temporal coding. SNSDN was proposed as an alternative solution to the binding problem [1]. SNSDN operation resembles Stochastic Diffusin on Search, SDS, a non-deterministic search algorithm able to rapidly locate the best instantiation of a target pattern within a noisy search space ([3], [5]). In SNSDN, relevant information is encoded in the length of interspike intervals. Although every neuron operates in its own time, ‘attention’ to a pattern in the search space results in self-synchronised activity of a large population of neurons. When multiple patterns are present in the search space, ‘switching of at- tention’ results in a change of the synchronous activity. The qualitative effect of attention on the synchronicity of spiking behaviour in both time and frequency domain will be discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ongoing debate in the literature concerns whether there is a link between contagious yawning and the human mirror neuron system (hMNS). One way of examining this issue is with the use of the electroencephalogram (EEG) to measure changes in mu activation during the observation of yawns. Mu oscillations are seen in the alpha bandwidth of the EEG (8–12 Hz) over sensorimotor areas. Previous work has shown that mu suppression is a useful index of hMNS activation and is sensitive to individual differences in empathy. In two experiments, we presented participants with videos of either people yawning or control stimuli. We found greater mu suppression for yawns than for controls over right motor and premotor areas, particularly for those scoring higher on traits of empathy. In a third experiment, auditory recordings of yawns were compared against electronically scrambled versions of the same yawns. We observed greater mu suppression for yawns than for the controls over right lateral premotor areas. Again, these findings were driven by those scoring highly on empathy. The results from these experiments support the notion that the hMNS is involved in contagious yawning, emphasise the link between contagious yawning and empathy, and stress the importance of good control stimuli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuropeptide signalling at the plasma membrane is terminated by neuropeptide degradation by cell-surface peptidases, and by beta-arrestin-dependent receptor desensitization and endocytosis. However, receptors continue to signal from endosomes by beta-arrestin-dependent processes, and endosomal sorting mediates recycling and resensitization of plasma membrane signalling. The mechanisms that control signalling and trafficking of receptors in endosomes are poorly defined. We report a major role for endothelin-converting enzyme-1 (ECE-1) in controlling substance P (SP) and the neurokinin 1 receptor (NK(1)R) in endosomes of myenteric neurones. ECE-1 mRNA and protein were expressed by myenteric neurones of rat and mouse intestine. SP (10 nM, 10 min) induced interaction of NK(1)R and beta-arrestin at the plasma membrane, and the SP-NK(1)R-beta-arrestin signalosome complex trafficked by a dynamin-mediated mechanism to ECE-1-containing early endosomes, where ECE-1 can degrade SP. After 120 min, NK(1)R recycled from endosomes to the plasma membrane. ECE-1 inhibitors (SM-19712, PD-069185) and the vacuolar H(+)ATPase inhibitor bafilomycin A(1), which prevent endosomal SP degradation, suppressed NK(1)R recycling by >50%. Preincubation of neurones with SP (10 nM, 5 min) desensitized Ca(2+) transients to a second SP challenge after 10 min, and SP signals resensitized after 60 min. SM-19712 inhibited NK(1)R resensitization by >90%. ECE-1 inhibitors also caused sustained SP-induced activation of extracellular signal-regulated kinases, consistent with stabilization of the SP-NK(1)R-beta-arrestin signalosome. By degrading SP and destabilizing endosomal signalosomes, ECE-1 has a dual role in controlling endocytic signalling and trafficking of the NK(1)R: promoting resensitization of G protein-mediated plasma membrane signalling, and terminating beta-arrestin-mediated endosomal signalling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

G protein-coupled receptors (GPCRs) are expressed throughout the nervous system where they regulate multiple physiological processes, participate in neurological diseases, and are major targets for therapy. Given that many GPCRs respond to neurotransmitters and hormones that are present in the extracellular fluid and which do not readily cross the plasma membrane, receptor trafficking to and from the plasma membrane is a critically important determinant of cellular responsiveness. Moreover, trafficking of GPCRs throughout the endosomal system can initiate signaling events that are mechanistically and functionally distinct from those operating at the plasma membrane. This review discusses recent advances in the relationship between signaling and trafficking of GPCRs in the nervous system. It summarizes how receptor modifications influence trafficking, discusses mechanisms that regulate GPCR trafficking to and from the plasma membrane, reviews the relationship between trafficking and signaling, and considers the implications of GPCR trafficking to drug development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The E3 ligase c-Cbl ubiquitinates protease-activated receptor 2 (PAR(2)), which is required for post-endocytic sorting of PAR(2) to lysosomes, where degradation arrests signaling. The mechanisms of post-endocytic sorting of ubiquitinated receptors are incompletely understood. Here, we investigated the role of hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), in post-endocytic sorting and signaling of PAR(2). In HEK-PAR(2) cells, PAR(2) activating peptide (PAR(2)-AP) induced PAR(2) trafficking from the cell surface to early endosomes containing endogenous HRS, and then to lysosomes. HRS overexpression or knockdown with small interfering RNA caused formation of enlarged HRS-positive endosomes, where activated PAR(2) and c-Cbl accumulated, and PAR(2) failed to traffic to lysosomes. Overexpression of HRS prevented PAR(2)-AP-induced degradation of PAR(2), as determined by Western blotting. Overexpression of HRS mutant lacking an ubiquitin-binding motif similarly caused retention of PAR(2) in enlarged endosomes. Moreover, HRS overexpression or knockdown caused retention of ubiquitin-resistant PAR(2)Delta14K/R in enlarged HRS-containing endosomes, preventing recycling and resensitization of PAR(2)Delta14K/R. HRS overexpression or knockdown similarly prevented lysosomal trafficking and recycling of calcitonin receptor-like receptor, a non-ubiquitinated receptor that traffics to lysosomes after sustained activation and recycles after transient activation. Thus, HRS plays a critically important role in the post-endocytic sorting of single receptors, PAR(2) and CLR, to both degradative and recycling pathways. This sorting role for HRS is independent of its ubiquitin-interacting motif, and it can regulate trafficking of both ubiquitinated and non-ubiquitinated PAR(2) and non-ubiquitinated CLR. The ultimate sorting decision to degradative or recycling pathways appears to occur downstream from HRS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sustained hypoxia alters the expression of numerous proteins and predisposes individuals to Alzheimer's disease (AD). We have previously shown that hypoxia in vitro alters Ca2+ homeostasis in astrocytes and promotes increased production of amyloid beta peptides (Abeta) of AD. Indeed, alteration of Ca2+ homeostasis requires amyloid formation. Here, we show that electrogenic glutamate uptake by astrocytes is suppressed by hypoxia (1% O2, 24h) in a manner that is independent of amyloid beta peptide formation. Thus, hypoxic suppression of glutamate uptake and expression levels of glutamate transporter proteins EAAT1 and EAAT2 were not mimicked by exogenous application of amyloid beta peptide, or by prevention of endogenous amyloid peptide formation (using inhibitors of either beta or gamma secretase). Thus, dysfunction in glutamate homeostasis in hypoxic conditions is independent of Abeta production, but will likely contribute to neuronal damage and death associated with AD following hypoxic events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to create accurate geometric models of neuronal morphology is important for understanding the role of shape in information processing. Despite a significant amount of research on automating neuron reconstructions from image stacks obtained via microscopy, in practice most data are still collected manually. This paper describes Neuromantic, an open source system for three dimensional digital tracing of neurites. Neuromantic reconstructions are comparable in quality to those of existing commercial and freeware systems while balancing speed and accuracy of manual reconstruction. The combination of semi-automatic tracing, intuitive editing, and ability of visualizing large image stacks on standard computing platforms provides a versatile tool that can help address the reconstructions availability bottleneck. Practical considerations for reducing the computational time and space requirements of the extended algorithm are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is estimated that the adult human brain contains 100 billion neurons with 5–10 times as many astrocytes. Although it has been generally considered that the astrocyte is a simple supportive cell to the neuron, recent research has revealed new functionality of the astrocyte in the form of information transfer to neurons of the brain. In our previous work we developed a protocol to pattern the hNT neuron (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/SiO2 substrates. In this work, we report how we have managed to pattern hNT astrocytes, on parylene-C/SiO2 substrates to single cell resolution. This article disseminates the nanofabrication and cell culturing steps necessary for the patterning of such cells. In addition, it reports the necessary strip lengths and strip width dimensions of parylene-C that encourage high degrees of cellular coverage and single cell isolation for this cell type. The significance in patterning the hNT astrocyte on silicon chip is that it will help enable single cell and network studies into the undiscovered functionality of this interesting cell, thus, contributing to closer pathological studies of the human brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In our previous work we developed a successful protocol to pattern the human hNT neuron (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/SiO2 substrates. This communication, reports how we have successfully managed to pattern the supportive cell to the neuron, the hNT astrocyte, on such substrates. Here we disseminate the nanofabrication, cell differentiation and cell culturing protocols necessary to successfully pattern the first human hNT astrocytes to single cell resolution on parylene-C/SiO2 substrates. This is performed for varying parylene strip widths providing excellent contrast to the SiO2 substrate and elegant single cell isolation at 10μm strip widths. The breakthrough in patterning human cells on a silicon chip has widespread implications and is valuable as a platform technology as it enables a detailed study of the human brain at the cellular and network level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The processing properties of the wheat flour are largely determined by the structures and interactions of the grain storage proteins (also called gluten proteins) which form a continuous visco-elastic network in dough. Wheat gluten proteins are classically divided into two groups, the monomeric gliadins and the polymeric glutenins, with the latter being further classified into low molecular weight (LMW) and high molecular weight (HMW) subunits. The synthesis, folding and deposition of the gluten proteins take place within the endomembrane system of the plant cell. However, determination of the precise routes of trafficking and deposition of individual gluten proteins in developing wheat grain has been limited in the past by the difficulty of developing monospecific antibodies. To overcome this limitation, a single gluten protein (a LMW subunit) was expressed in transgenic wheat with a C-terminal epitope tag, allowing the protein to be located in the cells of the developing grain using highly specific antibodies. This approach was also combined with the use of wider specificity antibodies to compare the trafficking and deposition of different gluten protein groups within the same endosperm cells. These studies are in agreement with previous suggestions that two trafficking pathways occur in wheat, with the proteins either being transported via the Golgi apparatus into the vacuole or accumulating directly within the lumen of the ER. They also suggest that the same individual protein could be trafficked by either pathway, possibly depending on the stage of development, and that segregation of gluten proteins both between and within protein bodies may occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regenerative cardiovascular medicine is the frontline of 21st-century health care. Cell therapy trials using bone marrow progenitor cells documented that the approach is feasible, safe and potentially beneficial in patients with ischemic disease. However, cardiovascular prevention and rehabilitation strategies should aim to conserve the pristine healing capacity of a healthy organism as well as reactivate it under disease conditions. This requires an increased understanding of stem cell microenvironment and trafficking mechanisms. Engagement and disengagement of stem cells of the osteoblastic niche is a dynamic process, finely tuned to allow low amounts of cells move out of the bone marrow and into the circulation on a regular basis. The balance is altered under stress situations, like tissue injury or ischemia, leading to remarkably increased cell egression. Individual populations of circulating progenitor cells could give rise to mature tissue cells (e.g. endothelial cells or cardiomyocytes), while the majority may differentiate to leukocytes, affecting the environment of homing sites in a paracrine way, e.g. promoting endothelial survival, proliferation and function, as well as attenuating or enhancing inflammation. This review focuses on the dynamics of the stem cell niche in healthy and disease conditions and on therapeutic means to direct stem cell/progenitor cell mobilization and recruitment into improved tissue repair.