7 resultados para Mycobacterium avium subspecies paratuberculosis

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Johne's disease in cattle is a contagious wasting disease caused by Mycobacterium avium subspecies paratuberculosis (MAP). Johne's infection is characterised by a long subclinical phase and can therefore go undetected for long periods of time during which substantial production losses can occur. The protracted nature of Johne's infection therefore presents a challenge for both veterinarians and farmers when discussing control options due to a paucity of information and limited test performance when screening for the disease. The objectives were to model Johne's control decisions in suckler beef cattle using a decision support approach, thus implying equal focus on ‘end user’ (veterinarian) participation whilst still focusing on the technical disease modelling aspects during the decision support model development. The model shows how Johne's disease is likely to affect a herd over time both in terms of physical and financial impacts. In addition, the model simulates the effect on production from two different Johne's control strategies; herd management measures and test and cull measures. The article also provides and discusses results from a sensitivity analysis to assess the effects on production from improving the currently available test performance. Output from running the model shows that a combination of management improvements to reduce routes of infection and testing and culling to remove infected and infectious animals is likely to be the least-cost control strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dynamic, deterministic, economic simulation model was developed to estimate the costs and benefits of controlling Mycobacterium avium subsp. paratuberculosis (Johne's disease) in a suckler beef herd. The model is intended as a demonstration tool for veterinarians to use with farmers. The model design process involved user consultation and participation and the model is freely accessible on a dedicated website. The 'user-friendly' model interface allows the input of key assumptions and farm specific parameters enabling model simulations to be tailored to individual farm circumstances. The model simulates the effect of Johne's disease and various measures for its control in terms of herd prevalence and the shedding states of animals within the herd, the financial costs of the disease and of any control measures and the likely benefits of control of Johne's disease for the beef suckler herd over a 10-year period. The model thus helps to make more transparent the 'hidden costs' of Johne's in a herd and the likely benefits to be gained from controlling the disease. The control strategies considered within the model are 'no control', 'testing and culling of diagnosed animals', 'improving management measures' or a dual strategy of 'testing and culling in association with improving management measures'. An example 'run' of the model shows that the strategy 'improving management measures', which reduces infection routes during the early stages, results in a marked fall in herd prevalence and total costs. Testing and culling does little to reduce prevalence and does not reduce total costs over the 10-year period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The protein antigen MPB70 is a major component of culture supernatants of Mycobacterium bovis and Is an active ingredient of bovine PPD used for skin-testing cattle for tuberculosis. we have shown that Mycobacterium kansasii possesses a similar gene that cross-reacts in a PCR test for M. bovis. Single strand conformational polymorphism analysis, and the DNA sequence of the PCR product, shows differences between M. kansasii strains, supporting the suggestion that M. kansasii is not a homogeneous species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have performed microarray hybridization studies on 40 clinical isolates from 12 common serovars within Salmonella enterica subspecies I to identify the conserved chromosomal gene pool. We were able to separate the core invariant portion of the genome by a novel mathematical approach using a decision tree based on genes ranked by increasing variance. All genes within the core component were confirmed using available sequence and microarray information for S. enterica subspecies I strains. The majority of genes within the core component had conserved homologues in Escherichia coli K-12 strain MG1655. However, many genes present in the conserved set which were absent or highly divergent in K-12 had close homologues in pathogenic bacteria such as Shigella flexneri and Pseudomonas aeruginosa. Genes within previously established virulence determinants such as SPI1 to SPI5 were conserved. In addition several genes within SPI6, all of SPI9, and three fimbrial operons (fim, bcf, and stb) were conserved within all S. enterica strains included in this study. Although many phage and insertion sequence elements were missing from the core component, approximately half the pseudogenes present in S. enterica serovar Typhi were conserved. Furthermore, approximately half the genes conserved in the core set encoded hypothetical proteins. Separation of the core and variant gene sets within S. enterica subspecies I has offered fundamental biological insight into the genetic basis of phenotypic similarity and diversity across S. enterica subspecies I and shown how the core genome of these pathogens differs from the closely related E. coli K-12 laboratory strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron is an essential cofactor for both mycobacterial growth during infection and for a successful protective immune response by the host. The immune response partly depends on the regulation of iron by the host, including the tight control of expression of the iron-storage protein, ferritin. BCG vaccination can protect against disease following Mycobacterium tuberculosis infection, but the mechanisms of protection remain unclear. To further explore these mechanisms, splenocytes from BCG-vaccinated guinea pigs were stimulated ex vivo with purified protein derivative from M. tuberculosis and a significant down-regulation of ferritin light- and heavy-chain was measured by reverse-transcription quantitative-PCR (P ≤0.05 and ≤0.01, respectively). The mechanisms of this down-regulation were shown to involve TNFα and nitric oxide. A more in depth analysis of the mRNA expression profiles, including genes involved in iron metabolism, was performed using a guinea pig specific immunological microarray following ex vivo infection with M. tuberculosis of splenocytes from BCG-vaccinated and naïve guinea pigs. M. tuberculosis infection induced a pro-inflammatory response in splenocytes from both groups, resulting in down-regulation of ferritin (P ≤0.05). In addition, lactoferrin (P ≤0.002), transferrin receptor (P ≤0.05) and solute carrier family 11A1 (P ≤0.05), were only significantly down-regulated after infection of the splenocytes from BCG-vaccinated animals. The results show that expression of iron-metabolism genes is tightly regulated as part of the host response to M. tuberculosis infection and that BCG-vaccination enhances the ability of the host to mount an iron-restriction response which may in turn help to combat invasion by mycobacteria.