3 resultados para Engineering, Manufacturing

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose – The purpose of this study is to examine the relationship between business-level strategy and organisational performance and to test the applicability of Porter's generic strategies in explaining differences in the performance of organisations. Design/methodology/approach – The study was focussed on manufacturing firms in the UK belonging to the electrical and mechanical engineering sectors. Data were collected through a postal survey using the survey instrument from 124 organisations and the respondents were all at CEO level. Both objective and subjective measures were used to assess performance. Non-response bias was assessed statistically and it was not found to be a major problem affecting this study. Appropriate measures were taken to ensure that common method variance (CMV) does not affect the results of this study. Statistical tests indicated that CMV problem does not affect the results of this study. Findings – The results of this study indicate that firms adopting one of the strategies, namely cost-leadership or differentiation, perform better than “stuck-in-the-middle” firms which do not have a dominant strategic orientation. The integrated strategy group has lower performance compared with cost-leaders and differentiators in terms of financial performance measures. This provides support for Porter's view that combination strategies are unlikely to be effective in organisations. However, the cost-leadership and differentiation strategies were not strongly correlated with the financial performance measures indicating the limitations of Porter's generic strategies in explaining performance heterogeneity in organisations. Originality/value – This study makes an important contribution to the literature by identifying some of the gaps in the literature through a systematic literature review and addressing those gaps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the ten years since the first edition of this book appeared there have been significant developments in food process engineering, notably in biotechnology and membrane application. Advances have been made in the use of sensors for process control, and the growth of information technology and on-line computer applications continues apace. In addition, plant investment decisions are increasingly determined by quality assurance considerations and have to incorporate a greater emphasis on health and safety issues. The content of this edition has been rearranged to include descriptions of recent developments and to reflect the influence of new technology on the control and operations of automated plant. Original examples have been retained where relevant and these, together with many new illustrations, provide a comprehensive guide to good practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Food industry is critical to any nation’s health and well-being; it is also critical to the economic health of a nation, since it can typically constitute over a fifth of the nation’s manufacturing GDP. Food Engineering is a discipline that ought to be at the heart of the food industry. Unfortunately, this discipline is not playing its rightful role today: engineering has been relegated to play the role of a service provider to the food industry, instead of it being a strategic driver for the very growth of the industry. This paper hypothesises that food engineering discipline, today, seems to be continuing the way it was in the last century, and has not risen to the challenges that it really faces. This paper therefore categorises the challenges as those being posed by: 1. Business dynamics, 2. Market forces, 3. Manufacturing environment and 4. Environmental Considerations, and finds the current scope and subject-knowledge competencies of food engineering to be inadequate in meeting these challenges. The paper identifies: a) health, b) environment and c) security as the three key drivers of the discipline, and proposes a new definition of food engineering. This definition requires food engineering to have a broader science base which includes biophysical, biochemical and health sciences, in addition to engineering sciences. This definition, in turn, leads to the discipline acquiring a new set of subject-knowledge competencies that is fit-for-purpose for this day and age, and hopefully for the foreseeable future. The possibility of this approach leading to the development of a higher education program in food engineering is demonstrated by adopting a theme based curriculum development with five core themes, supplemented by appropriate enabling and knowledge integrating courses. At the heart of this theme based approach is an attempt to combine engineering of process and product in a purposeful way, termed here as Food Product Realisation Engineering. Finally, the paper also recommends future development of two possible niche specialisation programs in Nutrition and Functional Food Engineering and Gastronomic Engineering. It is hoped that this reconceptualization of the discipline will not only make it more purposeful for the food industry, but it will also make the subject more intellectually challenging and attract bright young minds to the discipline.