32 resultados para ENZYME

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study quantifies the influence of Poa alpina on the soil microbial community in primary succession of alpine ecosystems, and whether these effects are controlled by the successional stage. Four successional sites representative of four stages of grassland development (initial, 4 years (non-vegetated); pioneer, 20 years; transition, 75 years; mature, 9500 years old) on the Rotmoos glacier foreland, Austria, were sampled. The size, composition and activity of the microbial community in the rhizosphere and bulk soil were characterized using the chloroform-fumigation extraction procedure, phospholipid fatty acid (PLFA) analysis and measurements of the enzymes beta-glucosidase, beta-xylosidase, N-acetyl-beta-glucosaminidase, leucine aminopeptidase, acid phosphatase and sulfatase. The interplay between the host plant and the successional stage was quantified using principal component (PCA) and multidimensional scaling analyses. Correlation analyses were applied to evaluate the relationship between soil factors (C-org, N-t, C/N ratio, pH, ammonium, phosphorus, potassium) and microbial properties in the bulk soil. In the pioneer stage microbial colonization of the rhizosphere of P. alpina was dependent on the reservoir of microbial species in the bulk soil. As a consequence, the rhizosphere and bulk soil were similar in microbial biomass (ninhydrin-reactive nitrogen (NHR-N)), community composition (PLFA), and enzyme activity. In the transition and mature grassland stage, more benign soil conditions stimulated microbial growth (NHR-N, total amount of PLFA, bacterial PLFA, Gram-positive bacteria, Gram-negative bacteria), and microbial diversity (Shannon index H) in the rhizosphere either directly or indirectly through enhanced carbon allocation. In the same period, the rhizosphere microflora shifted from a G(-) to a more G(+), and from a fungal to a more bacteria-dominated community. Rhizosphere beta-xylosidase, N-acetyl-beta-glucosaminidase, and sulfatase activity peaked in the mature grassland soil, whereas rhizosphere leucine aminopeptidase, beta-glucosidase, and phosphatase activity were highest in the transition stage, probably because of enhanced carbon and nutrient allocation into the rhizosphere due to better growth conditions. Soil organic matter appeared to be the most important driver of microbial colonization in the bulk soil. The decrease in soil pH and soil C/N ratio mediated the shifts in the soil microbial community composition (bacPLFA, bacPLFA/fungPLFA, G(-), G(+)/G(-)). The activities of beta-glucosidase, beta-xylosidase and phosphatase were related to soil ammonium and phosphorus, indicating that higher decomposition rates enhanced the nutrient availability in the bulk soil. We conclude that the major determinants of the microllora vary along the successional gradient: in the pioneer stage the rhizosphere microflora was primarily determined by the harsh soil environment; under more favourable environmental conditions, however, the host plant selected for a specific microbial community that was related to the dynamic interplay between soil properties and carbon supply. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study quantifies the influence of Poa alpina on the soil microbial community in primary succession of alpine ecosystems, and whether these effects are controlled by the successional stage. Four successional sites representative of four stages of grassland development (initial, 4 years (non-vegetated); pioneer, 20 years; transition, 75 years; mature, 9500 years old) on the Rotmoos glacier foreland, Austria, were sampled. The size, composition and activity of the microbial community in the rhizosphere and bulk soil were characterized using the chloroform-fumigation extraction procedure, phospholipid fatty acid (PLFA) analysis and measurements of the enzymes beta-glucosidase, beta-xylosidase, N-acetyl-beta-glucosaminidase, leucine aminopeptidase, acid phosphatase and sulfatase. The interplay between the host plant and the successional stage was quantified using principal component (PCA) and multidimensional scaling analyses. Correlation analyses were applied to evaluate the relationship between soil factors (C-org, N-t, C/N ratio, pH, ammonium, phosphorus, potassium) and microbial properties in the bulk soil. In the pioneer stage microbial colonization of the rhizosphere of P. alpina was dependent on the reservoir of microbial species in the bulk soil. As a consequence, the rhizosphere and bulk soil were similar in microbial biomass (ninhydrin-reactive nitrogen (NHR-N)), community composition (PLFA), and enzyme activity. In the transition and mature grassland stage, more benign soil conditions stimulated microbial growth (NHR-N, total amount of PLFA, bacterial PLFA, Gram-positive bacteria, Gram-negative bacteria), and microbial diversity (Shannon index H) in the rhizosphere either directly or indirectly through enhanced carbon allocation. In the same period, the rhizosphere microflora shifted from a G(-) to a more G(+), and from a fungal to a more bacteria-dominated community. Rhizosphere beta-xylosidase, N-acetyl-beta-glucosaminidase, and sulfatase activity peaked in the mature grassland soil, whereas rhizosphere leucine aminopeptidase, beta-glucosidase, and phosphatase activity were highest in the transition stage, probably because of enhanced carbon and nutrient allocation into the rhizosphere due to better growth conditions. Soil organic matter appeared to be the most important driver of microbial colonization in the bulk soil. The decrease in soil pH and soil C/N ratio mediated the shifts in the soil microbial community composition (bacPLFA, bacPLFA/fungPLFA, G(-), G(+)/G(-)). The activities of beta-glucosidase, beta-xylosidase and phosphatase were related to soil ammonium and phosphorus, indicating that higher decomposition rates enhanced the nutrient availability in the bulk soil. We conclude that the major determinants of the microllora vary along the successional gradient: in the pioneer stage the rhizosphere microflora was primarily determined by the harsh soil environment; under more favourable environmental conditions, however, the host plant selected for a specific microbial community that was related to the dynamic interplay between soil properties and carbon supply. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of in vitro experiments was carried out to examine the impact of enzyme application rate and incubation medium pH on the rate and extent of fermentation of alfalfa stems. In Experiment 1, a commercial enzyme product (Liquicell 2500, Specialty Enzyme and Biochemicals, Fresno, CA, USA) was added to alfalfa stems at six levels: 0, 0.51, 1.02, 2.55, 5.1, and 25.5 mu l/g (control and L1-L5, respectively) to forage DM in a completely randomized design, with a factorial arrangement of treatments. Rate and extent of fermentation and apparent organic matter degradation (OMD) were determined in vitro, using a gas production technique. Addition of enzyme linearly increased (P < 0.01) gas production for up to 12 h (68.9, 70.9, 67.6, 67.9, 71.9, and 74.9 ml/g OM for control, L1-L5, respectively) and OMD for up to 19 h incubation (0.425, 0.444, 0.433, 0.446, 0.443, and 0.451 for control, L1-L5, respectively), but no increases (P > 0.05) were detected thereafter. In Experiment 2, the effect of the same enzyme as used previously (added at 0.51 mu l/g forage DM, directly into the incubation medium), and buffer pH were examined using the ANKOM system, in a completely randomized design. Incubation medium pH was altered using 1 M citric acid, in order to obtain target initial pH values of 6.8 (control, no citric acid added), 6.2, 5.8, and 5.4. Actual initial pH values achieved were 6.72, 6.50, 6.20, and 5.72. Lowering the pH decreased (P < 0.01) dry matter disappearance (DMD) at 18 h incubation (0.339, 0.341, 0.314, and 0.291 for 6.72, 6.50, 6.20, and 5.72, respectively), whereas enzyme addition increased (P < 0.05) DMD at 24 h (0.363 versus 0.387 for control and enzyme-treated, respectively). Addition of enzyme increased (P < 0.05) neutral detergent fibre (NDF), acid detergent fibre (ADF), and hemicellulose (HC) degradation at pH 6.50 (0.077 versus 0.117; 0.020 versus 0.051; 0.217 versus 0.270 for control and enzyme-treated NDF, ADF and hemicellulose degradation, respectively) and 6.72 (0.091 versus 0.134; 0.041 versus 0.079; 0.205 versus 0.261 for control and enzyme-treated NDF, ADF and HC degradation, respectively). It is concluded that the positive effects of this enzyme product were independent of the pre-treatment period, but pH influenced the responses to enzyme supplementation. Under the conditions of this experiment, exogenous fibrolytic enzymes seemed to work better at close to neutrality ruminal pH conditions. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of experiments was completed to investigate the impact of addition of enzymes at ensiling on in vitro rumen degradation of maize silage. Two commercial products, Depot 40 (D, Biocatalysts Ltd., Pontypridd, UK) and Liquicell 2500 (L, Specialty Enzymes and Biochemicals, Fresno, CA, USA), were used. In experiment 1, the pH optima over a pH range 4.0-6.8 and the stability of D and L under changing pH (4.0, 5.6, 6.8) and temperature (15 and 39 degreesC) conditions were determined. In experiment 2, D and L were applied at three levels to whole crop maize at ensiling, using triplicate 0.5 kg capacity laboratory minisilos. A completely randomized design with a factorial arrangement of treatments was used. One set of treatments was stored at room temperature, whereas another set was stored at 40 degreesC during the first 3 weeks of fermentation, and then stored at room temperature. Silages were opened after 120 days. Results from experiment I indicated that the xylanase activity of both products showed an optimal pH of about 5.6, but the response differed according to the enzyme, whereas the endoglucanase activity was inversely related to pH. Both products retained at least 70% of their xylanase activity after 48 h incubation at 15 or 39 degreesC. In experiment 2, enzymes reduced (P < 0.05) silage pH, regardless of storage temperature and enzyme level. Depol 40 reduced (P < 0.05) the starch contents of the silages, due to its high alpha-amylase activity. This effect was more noticeable in the silages stored at room temperature. Addition of L reduced (P < 0.05) neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents. In vitro rumen degradation, assessed using the Reading Pressure Technique (RPT), showed that L increased (P < 0.05) the initial 6 h gas production (GP) and organic matter degradability (OMD), but did not affect (P > 0.05) the final extent of OMD, indicating that this preparation acted on the rumen degradable material. In contrast, silages treated with D had reduced (P < 0.05) rates of gas production and OMD. These enzymes, regardless of ensiling temperature, can be effective in improving the nutritive quality of maize silage when applied at ensiling. However, the biochemical properties of enzymes (i.e., enzymic activities, optimum pH) may have a crucial role in dictating the nature of the responses. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Intravenous infusions of glucose and amino acids increase both nitrogen balance and muscle accretion. We hypothesised that co-infusion of glucose ( to stimulate insulin) and essential amino acids (EAA) would act additively to improve nitrogen balance by decreasing muscle protein degradation in association with alterations in muscle expression of components of the ubiquitin-proteasome proteolytic pathway. Methods: We examined the effect of a 5 day intravenous infusions of saline, glucose, EAA and glucose + EAA, on urinary nitrogen excretion and muscle protein degradation. We carried out the study in 6 restrained calves since ruminants offer the advantage that muscle protein degradation can be assessed by excretion of 3 methyl-histidine and multiple muscle biopsies can be taken from the same animal. On the final day of infusion blood samples were taken for hormone and metabolite measurement and muscle biopsies for expression of ubiquitin, the 14-kDa E2 ubiquitin conjugating enzyme, and proteasome sub-units C2 and C8. Results: On day 5 of glucose infusion, plasma glucose, insulin and IGF-1 concentrations were increased while urea nitrogen excretion and myofibrillar protein degradation was decreased. Co-infusion of glucose + EAA prevented the loss of urinary nitrogen observed with EAA infusions alone and enhanced the increase in plasma IGF-1 concentration but there was no synergistic effect of glucose + EAA on the decrease in myofibrillar protein degradation. Muscle mRNA expression of the ubiquitin conjugating enzyme, 14-kDa E2 and proteasome sub-unit C2 were significantly decreased, after glucose but not amino acid infusions, and there was no further response to the combined infusions of glucose + EAA. Conclusion: Prolonged glucose infusion decreases myofibrillar protein degradation, prevents the excretion of infused EAA, and acts additively with EAA to increase plasma IGF-1 and improve net nitrogen balance. There was no evidence of synergistic effects between glucose + EAA infusion on muscle protein degradation or expression of components of the ubiquitin-proteasome proteolytic pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four multiparous cows with cannulas in the rumen and proximal duodenum were used in early lactation in a 4 x 4 Latin square experiment to investigate the effect of method of application of a fibrolytic enzyme product on digestive processes and milk production. The cows were given ad libitum a total mixed ration (TMR) composed of 57% (dry matter basis) forage (3:1 corn silage:grass silage) and 43% concentrates. The TMR contained (g/kg dry matter): 274 neutral detergent fiber, 295 starch, 180 crude protein. Treatments were TMR alone or TMR with the enzyme product added (2 kg/1000 kg TMR dry matter) either sprayed on the TMR 1 h before the morning feed (TMR-E), sprayed only on the concentrate the day before feeding (Concs-E), or infused into the rumen for 14 h/d (Rumen-E). There Was no significant effect on either feed intake or milk yield but both were highest on TMR-E. Rumen digestibility of dry matter, organic matter, and starch was unaffected by the enzyme. Digestibility of NDF was lowest on TMR-E in the rumen but highest postruminally. Total Tract digestibility was highest on TMR-E for dry matter, organic matter, and starch but treatment differences were nonsignificant for neutral detergent fiber: Corn silage stover retention time in the rumen was reduced by all enzyme treatments but postruminal transit time vas increased so the decline in total tract retention. time with enzymes was not significant. It is suggested that the tendency for enzymes to reduce particle retention time in the rumen may, by reducing the time available for fibrolysis to occur, at least partly explain the variability in the reported responses to enzyme treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although in different groups, the coronaviruses severe acute respiratory syndrome-coronavirus (SARS-CoV) and NL63 use the same receptor, angiotensin converting enzyme (ACE)-2, for entry into the host cell. Despite this common receptor, the consequence of entry is very different; severe respiratory distress in the case of SARS-CoV but frequently only a mild respiratory infection for NL63. Using a wholly recombinant system, we have investigated the ability of each virus receptor-binding protein, spike or S protein, to bind to ACE-2 in solution and on the cell surface. In both assays, we find that the NL63 S protein has a weaker interaction with ACE-2 than the SARS-CoV S protein, particularly in solution binding, but the residues required for contact are similar. We also confirm that the ACE-2-binding site of NL63 S lies between residues 190 and 739. A lower-affinity interaction with ACE-2 might partly explain the different pathological consequences of infection by SARS-CoV and NL63.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As an immunogen of the coronavirus, the nucleoprotein (N) is a potential antigen for the serological monitoring of infectious bronchitis virus (IBV). In this report, recombinant N protein from the Beaudette strain of IBV was produced and purified from Escherichia coli as well as Sf9 ( insect) cells, and used for the coating of enzyme-linked immunosorbent assay ( ELISA) plates. The N protein produced in Sf9 cells was phosphorylated whereas N protein from E. coli was not. Our data indicated that N protein purified from E. coli was more sensitive to anti-IBV serum than the protein from Sf9 cells. The recombinant N protein did not react with the antisera to other avian pathogens, implying that it was specific in the recognition of IBV antibodies. In addition, the data from the detection of field samples and IBV strains indicated that using the recombinant protein as coating antigen could achieve an equivalent performance to an ELISA kit based on infected material extracts as a source of antigen(s). ELISAs based on recombinant proteins are safe ( no live virus), clean ( only virus antigens are present), specific ( single proteins can be used) and rapid ( to respond to new viral strains and strains that cannot necessarily be easily cultured).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In areas such as drug development, clinical diagnosis and biotechnology research, acquiring details about the kinetic parameters of enzymes is crucial. The correct design of an experiment is critical to collecting data suitable for analysis, modelling and deriving the correct information. As classical design methods are not targeted to the more complex kinetics being frequently studied, attention is needed to estimate parameters of such models with low variance. We demonstrate that a Bayesian approach (the use of prior knowledge) can produce major gains quantifiable in terms of information, productivity and accuracy of each experiment. Developing the use of Bayesian Utility functions, we have used a systematic method to identify the optimum experimental designs for a number of kinetic model data sets. This has enabled the identification of trends between kinetic model types, sets of design rules and the key conclusion that such designs should be based on some prior knowledge of K-M and/or the kinetic model. We suggest an optimal and iterative method for selecting features of the design such as the substrate range, number of measurements and choice of intermediate points. The final design collects data suitable for accurate modelling and analysis and minimises the error in the parameters estimated. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Possible evidence is presented for Maillard glycation of enzymes during oligosaccharide synthesis by reverse hydrolysis. In 70% (w/v) mannose solutions, 1,2-alpha-mannosidase from Penicillium citrinum lost 40% and alpha-mannosidase from almonds lost 60% activity at 55 degreesC over 2 weeks. Oligosaccharide yields were 15 and 45% respectively. Higher molecular weight glycation adducts were formed in a time-dependent manner as seen by MALDI-TOF. Inhibitors of the Maillard. reaction were able to partially alleviate these effects resulting in reduced loss of enzyme activity and oligosaccharide yield increases of 27-53% relative to the control. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two novel tyrosinase mediated drug delivery pathways have been investigated for the selective delivery of cytotoxic units to melanocytes from urea and thiourea prodrugs. The synthesis of these prodrugs is reported, as well as oximetry data that illustrate that the targets are substrates for tyrosinase. The stability of each of the prodrugs in (i) phosphate buffer and (ii) bovine serum is discussed, and the urea prodrugs are identified as lead candidates for further studies. Finally, HPLC studies and preliminary cytotoxicity studies in a melanotic and an amelanotic cell line, that illustrate the feasibility of the approach, are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the use of an antiserum, specific for apolipoprotein (apo) B-48, in a competitive, enzyme-linked immunosorbent assay (ELISA) for apo B-48 in triacylglycerol-rich lipoprotein (TRL) fractions prepared from fasting and post-prandial plasma samples. Previously we showed the antiserum to act as an effective immunoblotting agent following sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Its use in this ELISA indicates that the antiserum recognises the C-terminal region of the protein on the surface of lipoprotein particles. The ELISA had a sensitivity of less than 37 ng/ml and intra- and inter-assay coefficients of variation of 3.8% and 8.6%, respectively. There was no cross-reaction in the ELISA against serum albumin, ovalbumin, thyroglobulin, or apo B-100 (purified by immunoaffinity chromatography), and high lipid concentrations (as Intralipid) did not interfere. A low density lipoprotein fraction reacted in the ELISA but SDS-PAGE-Western blot analysis confirmed the presence, in the fraction, of a small amount of apo B-48, indicating the existence of low density dietary-derived lipoprotein particles. ELISA and SDS-PAGE-Western blot analysis were used to measure apo B-48 in 12 series of postprandial samples collected from 4 diabetic and 8 normal subjects, following test meals of varying fat content. The mean correlation between the two methods was r = 0.74. The mean fasting concentration of apo B-48 in the TRL fractions from 15 healthy men was 0.46 μg/ml of plasma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural characterization of subtilisin mesoscale clusters, which were previously shown to induce supramolecular order in biocatalytic self-assembly of Fmocdipeptides, was carried out by synchrotron small-angle X-ray, dynamic, and static light scattering measurements. Subtilisin molecules self-assemble to form supramolecular structures in phosphate buffer solutions. Structural arrangement of subtilisin clusters at 55 degrees Centigrade was found to vary systematically with increasing enzyme concentration. Static light scattering measurements showed the cluster structure to be consistent with a fractal-like arrangement, with fractal dimension varying from 1.8 to 2.6 with increasing concentration for low to moderate enzyme concentrations. This was followed by a structural transition around the enzyme concentration of 0.5 mg mL-1 to more compact structures with significantly slower relaxation dynamics, as evidenced by dynamic light scattering measurements. These concentration-dependent supramolecular enzyme clusters provide tunable templates for biocatalytic self-assembly.