2 resultados para Copper resistance

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

No unequivocal evidence exists of genetically inherited resistance to metals/metalloids in field populations of earthworms. We studied cocoon production in adult Lumbricus rubellus Hoffmeister collected from an abandoned arsenic and copper mine (Devon Great Consols, Devon, UK), and abandoned tungsten mine (Carrock Fell, Cumbria, UK) and an uncontaminated cultured population. The earthworms were kept in uncontaminated soil for nine weeks. From a total of 42 L. rubellus from each site, Devon Great Consols adults produced 301 cocoons, of which 42 were viable; Carrock Fell 60 cocoons, of which 11 were viable; and the reference population 101 cocoons, of which 62 were viable. The hatchlings were collected and stored at 4degreesC at weekly intervals. After 12 weeks, all hatchlings were transferred to clean soil and maintained at 15degreesC for 20 weeks until they showed evidence of a clitellum. In toxicity trials, F1 generation L. rubellus were exposed to 2,000 mg As/kg as sodium arsenate or 300 mg Cu/kg as copper chloride for 28 d. The F1 generation L. rubellus from Devon Great Consols mine demonstrated resistance to arsenate but not copper. All L. rubellus from Devon Great Consols kept in soil treated with sodium arsenate remained in good condition over the 28-d period but lost condition rapidly and suffered high mortality in soil treated with copper chloride. The control population suffered high mortality in soil treated with sodium arsenate and copper chloride. Previous work has shown that field-collected adults demonstrate resistance to both arsenate and Cu toxicity under these conditions. Thus, while arsenate resistance may be demonstrated in F1 generation L. rubellus from one of the contaminated sites, Cu resistance is not. The F1 adults and F2 cocoons did not have significantly higher levels of As than the control population, with no residual As tissue burden, suggesting that resistance to As in these populations may be inherited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reaction of the redox-active ligand, Hpyramol (4-methyl-2-N-(2-pyridylmethyl)aminophenol) with K2PtCl4 yields monofunctional square-planar [Pt(pyrimol)Cl], PtL-Cl, which was structurally characterised by single-crystal X-ray diffraction and NMR spectroscopy. This compound unexpectedly cleaves supercoiled double-stranded DNA stoichiometrically and oxidatively, in a non-specific manner without any external reductant added, under physiological conditions. Spectro-electrochemical investigations of PtL-Cl were carried out in comparison with the analogue CuL-Cl as a reference compound. The results support a phenolate oxidation, generating a phenoxyl radical responsible for the ligand-based DNA cleavage property of the title compounds. Time-dependent in vitro cytotoxicity assays were performed with both PtL-Cl and CuL-Cl in various cancer cell lines. The compound CuL-Cl overcomes cisplatin-resistance in ovarian carcinoma and mouse leukaemia cell lines, with additional activity in some other cells. The platinum analogue, PtL-Cl also inhibits cell-proliferation selectively. Additionally, cellular-uptake studies performed for both compounds in ovarian carcinoma cell lines showed that significant amounts of Pt and Cu were accumulated in the A2780 and A2780R cancer cells. The conformational and structural changes induced by PtL-Cl and CuL-Cl on calf thymus DNA and phi X174 supercoiled phage DNA at ambient conditions were followed by electrophoretic mobility assay and circular dichroism spectroscopy. The compounds induce extensive DNA degradation and unwinding, along with formation of a monoadduct at the DNA minor groove. Thus, hybrid effects of metal-centre variation, multiple DNA-binding modes and ligand-based redox activity towards cancer cell-growth inhibition have been demonstrated. Finally, reactions of PtL-Cl with DNA model bases (9-Ethylguanine and 5'-GMP) followed by NMR and MS showed slow binding at Guanine-N7 and for the double stranded self complimentary oligonucleotide d(GTCGAC)(2) in the minor groove.