4 resultados para CANARY-ISLANDS

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deposits of coral-bearing, marine shell conglomerate exposed at elevations higher than 20 m above present-day mean sea level (MSL) in Bermuda and the Bahamas have previously been interpreted as relict intertidal deposits formed during marine isotope stage (MIS) I I, ca. 360-420 ka before present. On the strength of this evidence, a sea level highstand more than 20 m higher than present-day MSL was inferred for the MIS I I interglacial, despite a lack of clear supporting evidence in the oxygen-isotope records of deep-sea sediment cores. We have critically re-examined the elevated marine deposits in Bermuda, and find their geological setting, sedimentary relations, and microfaunal assemblages to be inconsistent with intertidal deposition over an extended period. Rather, these deposits, which comprise a poorly sorted mixture of reef, lagoon and shoreline sediments, appear to have been carried tens of meters inside karst caves, presumably by large waves, at some time earlier than ca. 310-360 ka before present (MIS 9-11). We hypothesize that these deposits are the result of a large tsunami during the mid-Pleistocene, in which Bermuda was impacted by a wave set that carried sediments from the surrounding reef platform and nearshore waters over the eolianite atoll. Likely causes for such a megatsunami are the flank collapse of an Atlantic island volcano, such as the roughly synchronous Julan or Orotava submarine landslides in the Canary Islands, or a giant submarine landslide on the Atlantic continental margin. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sensitivity of the biological parameters in a nutrient-phytoplankton-zooplankton-detritus (NPZD) model in the calculation of the air-sea CO2 flux, primary production and detrital export is analysed. We explore the effect on these outputs of variation in the values of the twenty parameters that control ocean ecosystem growth in a 1-D formulation of the UK Met Office HadOCC NPZD model used in GCMs. We use and compare the results from one-at-a-time and all-at-a-time perturbations performed at three sites in the EuroSITES European Ocean Observatory Network: the Central Irminger Sea (60° N 40° W), the Porcupine Abyssal Plain (49° N 16° W) and the European Station for Time series in the Ocean Canary Islands (29° N 15° W). Reasonable changes to the values of key parameters are shown to have a large effect on the calculation of the air-sea CO2 flux, primary production, and export of biological detritus to the deep ocean. Changes in the values of key parameters have a greater effect in more productive regions than in less productive areas. The most sensitive parameters are generally found to be those controlling well-established ocean ecosystem parameterisations widely used in many NPZD-type models. The air-sea CO2 flux is most influenced by variation in the parameters that control phytoplankton growth, detrital sinking and carbonate production by phytoplankton (the rain ratio). Primary production is most sensitive to the parameters that define the shape of the photosynthesis-irradiance curve. Export production is most sensitive to the parameters that control the rate of detrital sinking and the remineralisation of detritus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Saharan dust affects the climate by altering the radiation balance and by depositing minerals to the Atlantic Ocean. Both are dependent on particle size. We present aircraft measurements comprising 42 profiles of size distribution (0.1–300 µm), representing freshly uplifted dust, regional aged dust, and dust in the Saharan Air Layer (SAL) over the Canary Islands. The mean effective diameter of dust in SAL profiles is 4.5 µm smaller than that in freshly uplifted dust, while the vertical structure changes from a low shallow layer (0–1.5 km) to a well-mixed deep Saharan dust layer (0–5 km). Size distributions show a loss of 60 to 90% of particles larger than 30 µm 12 h after uplift. The single scattering albedo (SSA) increases from 0.92 to 0.94 to 0.95 between fresh, aged, and SAL profiles: this is enough to alter heating rates by 26%. Some fresh dust close to the surface shows SSA as low as 0.85