106 resultados para 16S rRNA sequencing

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sulphate-reducing bacteria (SRB) and methanogenic archaea (MA) are important anaerobic terminal oxidisers of organic matter. However, we have little knowledge about the distribution and types of SRB and MA in the environment or the functional role they play in situ. Here we have utilised sediment slurry microcosms amended with ecologically significant substrates, including acetate and hydrogen, and specific functional inhibitors, to identify the important SRB and MA groups in two contrasting sites on a UK estuary. Substrate and inhibitor additions had significant effects on methane production and on acetate and sulphate consumption in the slurries. By using specific 16S-targeted oligonucleotide probes we were able to link specific SRB and MA groups to the use of the added substrates. Acetate consumption in the freshwater-dominated sediments was mediated by Methanosarcinales under low-sulphate conditions and Desulfobacter under the high-sulphate conditions that simulated a tidal incursion. In the marine-dominated sediments, acetate consumption was linked to Desulfobacter. Addition of trimethylamine, a non-competitive substrate for methanogenesis, led to a large increase in Methanosarcinales signal in marine slurries. Desulfobulbus was linked to non-sulphate-dependent H-2 consumption in the freshwater sediments. The addition of sulphate to freshwater sediments inhibited methane production and reduced signal from probes targeted to Methanosarcinales and Methanomicrobiales, while the addition of molybdate to marine sediments inhibited Desulfobulbus and Desulfobacterium. These data complement our understanding of the ecophysiology of the organisms detected and make a firm connection between the capabilities of species, as observed in the laboratory, to their roles in the environment. (C) 2003 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strains from anal swabs and chronic otitis externa in dogs were shown to be phylogenetically related to the Enterococcus faecium species group. They shared a number of phenotypic characteristics with these species, but they could be easily differentiated by biochemical reactions. In addition, the canine strains were unusual in their nearly complete failure to grow on sodium azide-containing enterococci-selective media and in their Voges-Proskauer reactions (usually negative). By using 16S rRNA sequencing and DNA-DNA hybridization of representative strains, as well as tDNA interspacer gene PCR and SDS-PAGE of whole-cell proteins, the group of canine strains was shown to constitute a novel enterococcal species. The name Enterococcus canis sp. nov. is proposed for this species, with LMG 12316(T) (= CCUG 46666(T)) as the type strain. Concurrently, the taxonomic situation and nomenclatural position of Enterococcus porcinus were investigated. As no phenotypic or genotypic differences were found between this species and Enterococcus villorum, the name E. porcinus is considered to be a junior synonym of E. villorum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Actinomyces hyovaginalis, an organism initially described from pigs, was recovered from nine sheep and a moufflon. Further strains of A. hyovaginalis were recovered from five samples from pigs over the same period. 16S rRNA sequencing and extensive phenotyping demonstrated high similarity between the ovine and porcine isolates; however differences with respect to erythritol, adonitol and l-arabitol fermentation were detected. Ovine isolates were made from various sample sites including abscesses and highlight the importance of the accurate identification of the various coryneform isolates which affect sheep. A. hyovaginalis can be added to the growing list of coryneforms which can cause disease in sheep including Corynebacterium pseudotuberculosis, Trueperella pyogenes and Arcanobacterium pluranimalium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background—Probiotics are extensively used to promote gastrointestinal health and emerging evidence suggests that their beneficial properties can extend beyond the local environment of the gut. Here, we determined whether oral probiotic administration can alter the progression of post-infarction heart failure. Methods and Results—Rats were subjected to six weeks of sustained coronary artery occlusion and administered the probiotic Lactobacillus rhamnosus GR-1 or placebo in the drinking water ad libitum. Culture and 16s rRNA sequencing showed no evidence of GR-1 colonization or a significant shift in the composition of the cecal microbiome. However, animals administered GR-1 exhibited a significant attenuation of left ventricular hypertrophy based on tissue weight assessment as well as gene expression of atrial natriuretic peptide. Moreover, these animals demonstrated improved hemodynamic parameters reflecting both improved systolic and diastolic left ventricular function. Serial echocardiography revealed significantly improved left ventricular parameters throughout the six week follow-up period including a marked preservation of left ventricular ejection fraction as well as fractional shortening. Beneficial effects of GR-1 were still evident in those animals in which GR-1 was withdrawn at four weeks suggesting persistence of the GR-1 effects following cessation of therapy. Investigation of mechanisms showed a significant increase in the leptin to adiponectin plasma concentration ratio in rats subjected to coronary ligation which was abrogated by GR-1. Metabonomic analysis showed differences between sham control and coronary artery ligated hearts particularly with respect to preservation of myocardial taurine levels. Conclusions—The study suggests that probiotics offer promise as a potential therapy for the attenuation of heart failure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The animal gastrointestinal tract houses a large microbial community, the gut microbiota, that confers many benefits to its host, such as protection from pathogens and provision of essential metabolites. Metagenomic approaches have defined the chicken fecal microbiota in other studies, but here, we wished to assess the correlation between the metagenome and the bacterial proteome in order to better understand the healthy chicken gut microbiota. Here, we performed high-throughput sequencing of 16S rRNA gene amplicons and metaproteomics analysis of fecal samples to determine microbial gut composition and protein expression. 16 rRNA gene sequencing analysis identified Clostridiales, Bacteroidaceae, and Lactobacillaceae species as the most abundant species in the gut. For metaproteomics analysis, peptides were generated by using the Fasp method and subsequently fractionated by strong anion exchanges. Metaproteomics analysis identified 3,673 proteins. Among the most frequently identified proteins, 380 proteins belonged to Lactobacillus spp., 155 belonged to Clostridium spp., and 66 belonged to Streptococcus spp. The most frequently identified proteins were heat shock chaperones, including 349 GroEL proteins, from many bacterial species, whereas the most abundant enzymes were pyruvate kinases, as judged by the number of peptides identified per protein (spectral counting). Gene ontology and KEGG pathway analyses revealed the functions and locations of the identified proteins. The findings of both metaproteomics and 16S rRNA sequencing analyses are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phenotypically, Photobacterium damselae subsp. piscicida and P. damselae subsp. damselae are easily distinguished. However, their 16S rRNA gene sequences are identical, and attempts to discriminate these two subspecies by molecular tools are hampered by their high level of DNA-DNA similarity. The 16S-23S rRNA internal transcribed spacers (ITS) were sequenced in two strains of Photobacterium damselae subsp. piscicida and two strains of P. damselae subsp. damselae to determine the level of molecular diversity in this DNA region. A total of 17 different ITS variants, ranging from 803 to 296 bp were found, some of which were subspecies or strain specific. The largest ITS contained four tRNA genes (tDNAs) coding for tRNA(Glu(UUC)), tRNA(LyS(UUU)), tRNA(Val(UAC)), and tRNA(Ala(GGC)). Five amplicons contained tRNA(Glu(UUC)) combined with two additional tRNA genes, including tRNA(Lys(UUU)), tRNA(Val(UAC)), or tRNA(Ala(UGC)). Five amplicons contained tRNA(Ile(GAU)) and tRNA(Ala(UGC)). Two amplicons contained tRNA(Glu(UUC)) and tRNA(Val(UGC)). Two different isoacceptor tRNA(Ala) genes (GGC and UGC anticodons) were found. The five smallest amplicons contained no tRNA genes. The tRNA-gene combinations tRNA(Glu(UUC)) -tRNA(Val(UAC)) -tRNA(Ala(UGC)) and tRNA(Glu(UUC)) -tRNA(Ala(UGC)) have not been previously reported in bacterial ITS regions. The number of copies of the ribosomal operon (rrn) in the P. damselae chromosome ranged from at least 9 to 12. For ITS variants coexisting in two strains of different subspecies or in strains of the same subspecies, nucleotide substitution percentages ranged from 0 to 2%. The main source of variation between ITS variants was due to different combinations of DNA sequence blocks, constituting a mosaic-like structure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Termites are an important component of tropical soil communities and have a significant affect on the structure and nutrient content of soil. Digestion in termites is related to gut structure, gut physico-chemical conditions and gut symbiotic microbiota. Here we describe the use of 16S rRNA gene sequencing and Terminal-restriction Fragment Length Polymorphism (T-RFLP) analysis to examine methanogenic Archaea (MA) in the guts and food-soil of the soil-feeder Cubitermes fungifaber Sjostedt across a range of soil types. If they are strictly vertically inherited, then MA in guts should be the same in all individuals even if the soils differ across sites. In contrast, gut MA should reflect what is present in soil if populations are merely a reflection of what is ingested as the insects forage. We show clear differences between the euryarchaeal communities in termite guts and in food-soils from five different sites. Analysis of 16S rRNA gene clones indicated little overlap between the gut and soil communities. Gut clones were related to a termite-derived Methanomicrobiales cluster, to Methanobrevibacter and, surprisingly, to the haloalkaliphile Natronococcus. Soil clones clustered with Methanosarcina, Methanomicrococcus or Rice Cluster I. T-RFLP analysis indicated that the archaeal communities in the soil samples differed from site to site, whereas those in termite guts were similar between sites. There was some overlap between the gut and soil communities but these may represent transient populations in either guts or soil. Our data does not support the hypothesis that termite gut MA are derived from their food soil but also does not support a purely vertical transmission of gut microflora.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Termites are an important component of tropical soil communities and have a significant effect on the structure and nutrient content of soil. Digestion in termites is related to gut structure, gut physicochemical conditions, and gut symbiotic microbiota. Here we describe the use of 16S rRNA gene sequencing and terminal-restriction fragment length polymorphism (T-RFLP) analysis to examine methanogenic archaea (MA) in the guts and food-soil of the soil-feeder Cubitermes fungifaber Sjostedt across a range of soil types. If these MA are strictly vertically inherited, then the MA in guts should be the same in all individuals even if the soils differ across sites. In contrast, gut MA should reflect what is present in soil if populations are merely a reflection of what is ingested as the insects forage. We show clear differences between the euryarchaeal communities in termite guts and in food-soils from five different sites. Analysis of 16S rRNA gene clones indicated little overlap between the gut and soil communities. Gut clones were related to a termite-derived Methanomicrobiales cluster, to Methanobrevibacter and, surprisingly, to the haloalkaliphile Natronococcus. Soil clones clustered with Methanosarcina, Methanomicrococcus, or rice cluster I. T-RFLP analysis indicated that the archaeal communities in the soil samples differed from site to site, whereas those in termite guts were similar between sites. There was some overlap between the gut and soil communities, but these may represent transient populations in either guts or soil. Our data do not support the hypothesis that termite gut MA are derived from their food-soil but also do not support a purely vertical transmission of gut microflora.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Formate stimulates growth of a new bacterium from human feces. With high formate, it ferments glucose to acetate via the Wood-Ljungdahl pathway. The original isolate fermented vegetable cellulose and carboxymethylcellulose, but it lost this ability after storage at -76degreesC. 16S rRNA gene sequencing identifies it as a distinct line within the Clostridium coccoides supra-generic rRNA grouping. We propose naming it Bryantella formatexigens gen. nov., sp. nov.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two Gram-negative, anaerobic, non-spore-forming, rod-shaped organisms were isolated from a swine-manure storage pit. Based on morphological and biochemical criteria, the strains were tentatively identified as belonging to the genus Bacteroides but they did not appear to correspond to any recognized species of the genus. Comparative 16S rRNA gene sequencing studies showed that the strains were related closely to each other and confirmed their placement in the genus Bacteroides, but sequence divergence values of > 10% from reference Bacteroides species demonstrated that the organisms from manure represent a novel species. Based on biochemical criteria and molecular genetic evidence, it is proposed that the unknown isolates from manure be assigned to a novel species of the genus Bacteroides, as Bacteroides coprosuis sp. nov. The type strain is PC139(T) (=CCUG 50528(T)=NRRL B-41113(T)).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nineteen strains of Gram-positive, non-motile, non-spore-forming, catalase-positive, rod-shaped bacteria isolated from pigs were characterized by using biochemical, molecular chemical and molecular genetic methods. Two distinct groups of organisms were discerned, based on their colonial morphology, CAMP (Christie-Atkins-Munch-Petersen) reaction and numerical profile by using the API Coryne system. The first group (113 strains) gave a doubtful discrimination between Corynebacterium striatum and Corynebacterium amycolatum, whilst the second group (six strains) were identified tentatively as Corynebacterium urealyticum. Comparative 16S rRNA gene sequencing studies demonstrated that all of the isolates belonged phylogenetically to the genus Corynebacterium. The first group of organisms was highly similar to Corynebacterium testudinoris with respect to 16S rRNA gene sequences and physiological characteristics, whereas the remaining six isolates formed a hitherto unknown subline within the genus, associated with a small subcluster of species that included Corynebacterium auriscanis and its close relatives. The unknown Corynebacterium sp. was distinguished readily from these and other species of the genus by biochemical tests. Based on both phenotypic and phylogenetic evidence, it is proposed that the new isolates from pigs should be classified as a novel species, Corynebacterium suicordis sp. nov. The type strain is P81/02(T) (=CECT 5724(T) =CCUG 46963(T)).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Five strains of an unusual Gram-negative, catalase-positive, oxidase-positive, coccobacillus-shaped bacterium isolated from the lungs and heart of pigs with pneumonia and pericarditis were characterized by phenotypic and molecular genetic methods. On the basis of cellular morphology and biochemical criteria, the isolates were tentatively assigned to the family Neisseriaceae, although they did not appear to correspond to any recognized genus or species. Comparative 16S rRNA gene sequencing showed that the five unidentified strains were phylogenetically highly related to each other and represent a hitherto unknown subline within the family Neisseriaceae. On the basis of both phenotypic and phylogenetic evidence, it is proposed that the unknown isolates from pigs be classified as a novel genus and species within the family Neisseriaceae, for which the name Uruburuella suis gen. nov., sp. nov. is proposed. The type strain of U. suis is 1258/02(T) (=CCUG 47806(T) =CECT 5685(T)).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Unusual Gram-negative, catalase- and oxidase-positive, coccus-shaped bacteria isolated from the lungs of two lambs were characterized by phenotypic and molecular-genetic methods. Comparative 16S rRNA gene sequencing studies demonstrated that the unknown isolates were genealogically highly related to each other (99.8% sequence similarity) and represent a novel subline within the genus Psychrobacter. The unknown bacterium was phylogenetically closely related to, but distinct from, Psychrobacter phenylpyruvicus, Psychrobacter immobilis, Psychrobacter glacincola and Psychrobacter urativorans. The novel Psychrobacter isolates were readily distinguished from all other Psychrobacter species and other Gram-negative, oxidase-positive bacteria usually responsible for lung infections in sheep by physiological and biochemical tests. Based on molecular-genetic and phenotypic evidence, it is proposed that the unknown Psychrobacter isolates from lambs be classified as Psychrobacterpulmonis sp. nov. The type strain is strain S-606(T) (= CECT 5989(T) = CCUG 46240(T)).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Myo-inositol hexaphosphate (IP6) or phytic acid is found mostly in cereals and legumes and is thought to possess anti-carcinogenic properties. Aim: To isolate and identify faecal bacteria capable of phytic acid metabolism and to assess the effectiveness of prebiotics (dietary oligosaccharides, metabolised by selective colonic bacteria) in preserving the integrity of phytic acid. Methods: Faecal samples from three volunteers were used in continuous culture experiments under varying conditions of pH, substrate concentration and dilution rates, seventy three different isolates cultured at steady state were then screened for phytic acid metabolism and identified through partial sequencing of their 16S rRNA genes (16S ribosomal ribonucleic acid). Utilisation of phytic acid was also assessed in a continuous culture system enriched with prebiotic fructooligosaccharides (FOS). Results: Bacteroides spp., Clostridium spp. and facultatively anaerobic bacteria generally appeared to maintain viable counts in the presence of phytic acid. Bifidobacterium spp. and Lactobacillus spp. appeared less able to maintain viable counts in the presence of phytic acid. These results were confirmed by an increase in viable counts of Bacteroides spp., Clostridium spp. and a decrease in viable counts of Bifidobacterium spp. and Lactobacillus spp. once phytic acid was introduced to a FOS enriched continuous culture. Conclusions: The phytate metabolising biodiversity from the human large intestine does not appear to encompass major bacterial genera associated with beneficial or benign health effects (e.g. Lactobacillus spp. and Bifidobacterium spp).