105 resultados para peptide


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The collagen production of human dermal and corneal fibroblasts in contact with solutions of the peptide amphiphile (PA) C16–KTTKS is investigated and related to its self-assembly into nanotape structures. This PA is used in antiwrinkle cosmeceutical applications (trade name Matrixyl). We prove that C16–KTTKS stimulates collagen production in a concentration-dependent manner close to the critical aggregation concentration determined from pyrene fluorescence spectroscopy. This suggests that self-assembly and the stimulation of collagen production are inter-related.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The collagen production of human dermal and corneal fibroblasts in contact with solutions of the peptide amphiphile (PA) C16−KTTKS is investigated and related to its self-assembly into nanotape structures. This PA is used in antiwrinkle cosmeceutical applications (trade name Matrixyl). We prove that C16−KTTKS stimulates collagen production in a concentration-dependent manner close to the critical aggregation concentration determined from pyrene fluorescence spectroscopy. This suggests that self-assembly and the stimulation of collagen production are inter-related.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thermal transition is observed in the peptide amphiphile C16-KTTKS (TFA salt) from nanotapes at 20 degrees C to micelles at higher temperature (the transition temperature depending on concentration). The formation of extended nanotapes by the acetate salt of this peptide amphiphile, which incorporates a pentapeptide from type I procollagen, has been studied previously [V. Castelletto et al., Chem. Commun., 2010, 46, 9185]. Here, proton NMR and SAXS provide evidence for the TFA salt spherical micelles at high temperature. The phase behavior, with a Krafft temperature separating insoluble aggregates (extended nanotapes) at low temperature from the high temperature micellar phase resembles that for conventional surfactants, however this has not previously been reported for peptide amphiphiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-assembly in water of designed peptide amphiphile (PA) C16-ETTES containing two anionic residues and its mixtures with C16-KTTKS containing two cationic residues has been investigated. Multiple spectroscopy, microscopy, and scattering techniques are used to examine ordering extending from the β-sheet structures up to the fibrillar aggregate structure. The peptide amphiphiles both comprise a hexadecyl alkyl chain and a charged pentapeptide headgroup containing two charged residues. For C16-ETTES, the critical aggregation concentration was determined by fluorescence experiments. FTIR and CD spectroscopy were used to examine β-sheet formation. TEM revealed highly extended tape nanostructures with some striped regions corresponding to bilayer structures viewed edge-on. Small-angle X-ray scattering showed a main 5.3 nm bilayer spacing along with a 3 nm spacing. These spacings are assigned respectively to predominant hydrated bilayers and a fraction of dehydrated bilayers. Signs of cooperative self-assembly are observed in the mixtures, including reduced bundling of peptide amphiphile aggregates (extended tape structures) and enhanced β-sheet formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transitions in nanostructure driven by pH are observed for a self-assembling peptide amphiphile (PA) with a cationic pentapeptide headgroup. At pH 3, the PA forms flat tape-like structures, while at pH 4 the PA assembles into twisted right handed structures. These twisted structures transform again to flat tape-like structures at pH 7. In complete contrast, spherical micelles are observed at pH 2. These changes in response to pH may be relevant to biological and pharmaceutical applications of this PA in skincare.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we describe a novel combination of Raman spectroscopy, isotope editing and X-ray scattering as a powerful approach to give detailed structural information on aromatic side chains in peptide fibrils. The orientation of the tyrosine residues in fibrils of the peptide YTIAALLSPYS with respect to the fibril axis has been determined from a combination of polarised Raman spectroscopy and X-ray diffraction measurements. The Raman intensity of selected tyrosine bands collected at different polarisation geometries is related to the values and orientation of the Raman tensor for those specific vibrations. Using published Raman tensor values we solved the relevant expressions for both of the two tyrosine residues present in this peptide. Ring deuteration in one of the two tyrosine side chains allowed for the calculation to be performed individually for both, by virtue of the isotopic shift that eliminates band overlapping. Sample disorder was taken into account by obtaining the distribution of orientations of the samples from X-ray diffraction experiments. The results provide previously unavailable details about the molecular conformation of this peptide, and demonstrate the value of this approach for the study of amyloid fibrils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-assembly and bioactivity of the peptide–polymer conjugate DGRFFF–PEG3000 containing the RGD cell adhesion motif has been examined, in aqueous solution. The conjugate is designed to be amphiphilic by incorporation of three hydrophobic phenylalanine residues as well as the RGD unit and a short poly(ethylene glycol) (PEG) chain of molar mass 3000 kg mol-1. Above a critical aggregation concentration, determined by fluorescence measurements, signals of b-sheet structure are revealed by spectroscopic measurements, as well as X-ray diffraction. At high concentration, a self-assembled fibril nanostructure is revealed by electron microscopy. The fibrils are observed despite PEG crystallization which occurs on drying. This suggests that DGRFFF has an aggregation tendency that is sufficiently strong not to be prevented by PEG crystallization. The adhesion, viability and proliferation of human corneal fibroblasts was examined for films of the conjugate on tissue culture plates (TCPs) as well as low attachment plates. On TCP, DGRFFF–PEG3000 films prepared at sufficiently low concentration are viable, and cell proliferation is observed. However, on low attachment surfaces, neither cell adhesion nor proliferation was observed, indicating that the RGD motif was not available to enhance cell adhesion. This was ascribed to the core–shell architecture of the self-assembled fibrils with a peptide core surrounded by a PEG shell which hinders access to the RGD unit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A designed peptide amphiphile C16-KKFFVLK self-assembles into nanotubes and helical ribbons in aqueous solution at room temperature. A remarkable unwinding transition, leading to twisted tapes, is observed on heating. Nanotubes and ribbons re-form on cooling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-assembly of proteins and peptides into b-sheet-rich amyloid fibers is a process that has gained notoriety because of its association with human diseases and disorders. Spontaneous self-assembly of peptides into nonfibrillar supramolecular structures can also provide a versatile and convenient mechanism for the bottom-up design of biocompatible materials with functional properties favoring a wide range of practical applications.[1] One subset of these fascinating and potentially useful nanoscale constructions are the peptide nanotubes, elongated cylindrical structures with a hollow center bounded by a thin wall of peptide molecules.[2] A formidable challenge in optimizing and harnessing the properties of nanotube assemblies is to gain atomistic insight into their architecture, and to elucidate precisely how the tubular morphology is constructed from the peptide building blocks. Some of these fine details have been elucidated recently with the use of magic-angle-spinning (MAS) solidstate NMR (SSNMR) spectroscopy.[3] MAS SSNMR measurements of chemical shifts and through-space interatomic distances provide constraints on peptide conformation (e.g., b-strands and turns) and quaternary packing. We describe here a new application of a straightforward SSNMR technique which, when combined with FTIR spectroscopy, reports quantitatively on the orientation of the peptide molecules within the nanotube structure, thereby providing an additional structural constraint not accessible to MAS SSNMR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of versatile bioactive surfaces able to emulate in vivo conditions is of enormous importance to the future of cell and tissue therapy. Tuning cell behaviour on two-dimensional surfaces so that the cells perform as if they were in a natural three-dimensional tissue represents a significant challenge, but one that must be met if the early promise of cell and tissue therapy is to be fully realised. Due to the inherent complexities involved in the manufacture of biomimetic three-dimensional substrates, the scaling up of engineered tissue-based therapies may be simpler if based upon proven two-dimensional culture systems. In this work, we developed new coating materials composed of the self-assembling peptide amphiphiles (PAs) C16G3RGD (RGD) and C16G3RGDS (RGDS) shown to control cell adhesion and tissue architecture while avoiding the use of serum. When mixed with the C16ETTES diluent PA at 13 : 87 (mol mol-1) ratio at 1.25 times 10-3 M, the bioactive {PAs} were shown to support optimal adhesion, maximal proliferation, and prolonged viability of human corneal stromal fibroblasts ({hCSFs)}, while improving the cell phenotype. These {PAs} also provided stable adhesive coatings on highly-hydrophobic surfaces composed of striated polytetrafluoroethylene ({PTFE)}, significantly enhancing proliferation of aligned cells and increasing the complexity of the produced tissue. The thickness and structure of this highly-organised tissue were similar to those observed in vivo, comprising aligned newly-deposited extracellular matrix. As such, the developed coatings can constitute a versatile biomaterial for applications in cell biology, tissue engineering, and regenerative medicine requiring serum-free conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the properties of an antimicrobial surfactant-like peptide (Ala)6(Arg), A6R, containing a cationic headgroup. The interaction of this peptide with zwitterionic (DPPC) lipid vesicles is investigated using a range of microscopic, X-ray scattering, spectroscopic, and calorimetric methods. The β-sheet structure adopted by A6R is disrupted in the presence of DPPC. A strong effect on the small-angle X-ray scattering profile is observed: the Bragg peaks from the DPPC bilayers in the vesicle walls are eliminated in the presence of A6R and only bilayer form factor peaks are observed. All of these observations point to the interaction of A6R with DPPC bilayers. These studies provide insight into interactions between a model cationic peptide and vesicles, relevant to understanding the action of antimicrobial peptides on lipid membranes. Notably, peptide A6R exhibits antimicrobial activity without membrane lysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we studied the self-assembly of two peptide amphiphiles, C16-Gly-Gly-Gly-Arg-Gly- Asp (PA 1: C16-GGG-RGD) and C16-Gly-Gly-Gly-Arg-Gly-Asp-Ser (PA 2: C16-GGG-RGDS).We showed that PA 1 and PA 2 self-assemble into nanotapes with an internal bilayer structure. C16 chains were highly interdigitated within the nanotape cores, while the peptide blocks formed water-exposed b-sheets too. PA 1 nanotapes were characterized by one spacing distribution, corresponding to a more regular internal structure than that of PA 2 nanotapes, which presented two different spacing distributions. We showed that it is possible to obtain homogeneous nanotapes in water by co-assembling PA 1 or PA 2 with the negatively charged diluent C16-Glu-Thr-Thr-Glu- Ser (PA 3: C16-ETTES). The homogeneous tapes formed by PA 1–PA 3 or PA 2–PA 3 mixtures presented a structure similar to that observed for the corresponding pure PA 1 or PA 2 nanotapes. The mixed nanotapes, which were able to form a stabilized matrix containing homogeneously distributed cell adhesive RGD groups, represent promising materials for designing new cell adhesion substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new synthetic tripeptide-based hydrogel has been discovered at physiological pH and temperature. This hydrogel has been thoroughly characterized using different techniques including field emission scanning electron microscopic (FESEM) and high-resolution transmission electron microscopic (HR-TEM) imaging, small- and wide-angle X-ray diffraction analyses, FT-IR, circular dichroism, and rheometric analyses. Moreover, this gel exhibits thixotropy and injectability. This hydrogel has been used for entrapment and sustained release of an antibiotic vancomycin and vitamin B12 at physiological pH and temperature for about 2 days. Interestingly, MTT assay of these gelator molecules shows almost 100% cell viability of this peptide gelator, indicating its noncytotoxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine the self-assembly of a peptide A6H comprising a hexa-alanine sequence A6 with a histidine (H) “head group”, which chelates Zn2+ cations. We study the self assembly of A6H and binding of Zn2+ ions in ZnCl2 solutions, under acidic and neutral conditions. A6H self-assembles into nanotapes held together by a β-sheet structure in acidic aqueous solutions. By dissolving A6H in acidic ZnCl2 solutions, the carbonyl oxygen atoms in A6H chelate the Zn2+ ions and allow for β-sheet formation at lower concentrations, consequently reducing the onset concentration for nanotape formation. A6H mixed with water or ZnCl2 solutions under neutral conditions produces short sheets or pseudocrystalline tapes, respectively. The imidazole ring of A6H chelates Zn2+ ions in neutral solutions. The internal structure of nanosheets and pseudocrystalline sheets in neutral solutions is similar to the internal structure of A6H nanotapes in acidic solutions. Our results show that it is possible to induce dramatic changes in the self-assembly and chelation sites of A6H by changing the pH of the solution. However, it is likely that the amphiphilic nature of A6H determines the internal structure of the self-assembled aggregates independent from changes in chelation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The peptide amphiphile C16-KTTKS templates silica polymerization, enabling the production of silica nanotape structures, imaged via electron microscopy (TEM and SEM). X-ray scattering shows that the nanotapes comprise stacked layers, as for the parent peptide amphiphile, but with a substantially increased layer spacing resulting from silica polymerization.