49 resultados para gene expression


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prolonged hemodynamic load as a result of hypertension eventually leads to maladaptive cardiac adaptation and heart failure. The signalling pathways that underlie these changes are still poorly understood. The adaptive response to mechanical load is mediated by mechanosensors which convert the mechanical stimuli into a biological response. We examined the effect of cyclic mechanical stretch on myocyte adaptation using neonatal rat ventricular myocytes with 10% (adaptive) or 20% (maladaptive) maximum strain, 1Hz for 48 hours to mimic in vivo mechanical stress. Cells were also treated with and without L-NAME, a general nitric oxide synthase (NOS) inhibitor to suppress NO production. Maladaptive 20% mechanical stretch led to a significant loss of intact sarcomeres which was rescued by LNAME (P<0.05, n≥5 cultures). We hypothesized that the mechanism was through NOinduced alteration of myocyte gene expression. L-NAME up-regulated the mechanosensing proteins Muscle LIM protein (MLP (by 100%, p<0.05, n=4 cultures)) and lipoma preferred partner, a novel cardiac protein (LPP (by 80%, p<0.05, n=4 cultures)). L-NAME also significantly altered the subcellular localisation of LPP and MLP in a manner that favoured growth and adaptation. These findings suggest that NO participates in stretch-mediated adaptation. The use of isoform selective NOS inhibitors indicated a complex interaction between iNOS and nNOS isoforms regulate gene expression. LPP knockdown by siRNA led to formation of α-actinin aggregates and Z-bodies showing that myofibrillogenesis was impaired. There was an up-regulation of E3 ubiquitin ligase (MUL1) by 75% (P<0.05, n=5 cultures). This indicates that NO contributes to stretch-mediated adaptation via the upregulation of proteins associated mechansensing and myofibrillogenesis, thereby presenting potential therapeutic targets during the progression of heart failure. Keywords: Mechanotransduction, heart failure, stretch, heart, hypertrophy

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Onion (Allium cepa) is regarded as a nonclimacteric vegetable. In onions, however, ethylene can suppress sprouting while the ethylene-binding inhibitor 1-methylcyclopropene (1-MCP) can also suppress sprout growth; yet, it is unknown how ethylene and 1-MCP elicit the same response. In this study, onions were treated with 10 mu L L(-1) ethylene or 1 mu L L(-1) 1-MCP individually or in combination for 24 h at 20 degrees C before or after curing (6 weeks) at 20 degrees C or 28 degrees C and then stored at 1 degrees C. Following curing, a subset of these same onions was stored separately under continuous air or ethylene (10 mu L L(-1)) at 1 degrees C. Onions treated with ethylene and 1-MCP in combination after curing for 24 h had reduced sprout growth as compared with the control 25 weeks after harvest. Sprout growth following storage beyond 25 weeks was only reduced through continuous ethylene treatment. This observation was supported by a higher proportion of down-regulated genes characterized as being involved in photosynthesis, measured using a newly developed onion microarray. Physiological and biochemical data suggested that ethylene was being perceived in the presence of 1-MCP, since sprout growth was reduced in onions treated with 1-MCP and ethylene applied in combination but not when applied individually. A cluster of probes representing transcripts up-regulated by 1-MCP alone but down-regulated by ethylene alone or in the presence of 1-MCP support this suggestion. Ethylene and 1-MCP both down-regulated a probe tentatively annotated as an ethylene receptor as well as ethylene-insensitive 3, suggesting that both treatments down-regulate the perception and signaling events of ethylene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our aim was to generate and prove the concept of "smart" plants to monitor plant phosphorus (P) status in Arabidopsis. Smart plants can be genetically engineered by transformation with a construct containing the promoter of a gene up-regulated specifically by P starvation in an accessible tissue upstream of a marker gene such as beta-glucuronidase (GUS). First, using microarrays, we identified genes whose expression changed more than 2.5-fold in shoots of plants growing hydroponically when P, but not N or K, was withheld from the nutrient solution. The transient changes in gene expression occurring immediately (4 h) after P withdrawal were highly variable, and many nonspecific, shock-induced genes were up-regulated during this period. However, two common putative cis-regulatory elements (a PHO-like element and a TATA box-like element) were present significantly more often in the promoters of genes whose expression increased 4 h after the withdrawal of P compared with their general occurrence in the promoters of all genes represented on the microarray. Surprisingly, the expression of only four genes differed between shoots of P-starved and -replete plants 28 h after P was withdrawn. This lull in differential gene expression preceded the differential expression of a new group of 61 genes 100 h after withdrawing P. A literature survey indicated that the expression of many of these "late" genes responded specifically to P starvation. Shoots had reduced P after 100 h, but growth was unaffected. The expression of SQD1, a gene involved in the synthesis of sulfolipids, responded specifically to P starvation and was increased 100 h after withdrawing P. Leaves of Arabidopsis bearing a SQD1::GUS construct showed increased GUS activity after P withdrawal, which was detectable before P starvation limited growth. Hence, smart plants can monitor plant P status. Transferring this technology to crops would allow precision management of P fertilization, thereby maintaining yields while reducing costs, conserving natural resources, and preventing pollution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: There are compelling economic and environmental reasons to reduce our reliance on inorganic phosphate (Pi) fertilisers. Better management of Pi fertiliser applications is one option to improve the efficiency of Pi fertiliser use, whilst maintaining crop yields. Application rates of Pi fertilisers are traditionally determined from analyses of soil or plant tissues. Alternatively, diagnostic genes with altered expression under Pi limiting conditions that suggest a physiological requirement for Pi fertilisation, could be used to manage Pifertiliser applications, and might be more precise than indirect measurements of soil or tissue samples. Results: We grew potato (Solanum tuberosum L.) plants hydroponically, under glasshouse conditions, to control their nutrient status accurately. Samples of total leaf RNA taken periodically after Pi was removed from the nutrient solution were labelled and hybridised to potato oligonucleotide arrays. A total of 1,659 genes were significantly differentially expressed following Pi withdrawal. These included genes that encode proteins involved in lipid, protein, and carbohydrate metabolism, characteristic of Pi deficient leaves and included potential novel roles for genes encoding patatin like proteins in potatoes. The array data were analysed using a support vector machine algorithm to identify groups of genes that could predict the Pi status of the crop. These groups of diagnostic genes were tested using field grown potatoes that had either been fertilised or unfertilised. A group of 200 genes could correctly predict the Pi status of field grown potatoes. Conclusions: This paper provides a proof-of-concept demonstration for using microarrays and class prediction tools to predict the Pi status of a field grown potato crop. There is potential to develop this technology for other biotic and abiotic stresses in field grown crops. Ultimately, a better understanding of crop stresses may improve our management of the crop, improving the sustainability of agriculture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene expression is a quantitative trait that can be mapped genetically in structured populations to identify expression quantitative trait loci (eQTL). Genes and regulatory networks underlying complex traits can subsequently be inferred. Using a recently released genome sequence, we have defined cis- and trans-eQTL and their environmental response to low phosphorus (P) availability within a complex plant genome and found hotspots of trans-eQTL within the genome. Interval mapping, using P supply as a covariate, revealed 18,876 eQTL. trans-eQTL hotspots occurred on chromosomes A06 and A01 within Brassica rapa; these were enriched with P metabolism-related Gene Ontology terms (A06) as well as chloroplast-and photosynthesis-related terms (A01). We have also attributed heritability components to measures of gene expression across environments, allowing the identification of novel gene expression markers and gene expression changes associated with low P availability. Informative gene expression markers were used to map eQTL and P use efficiency-related QTL. Genes responsive to P supply had large environmental and heritable variance components. Regulatory loci and genes associated with P use efficiency identified through eQTL analysis are potential targets for further characterization and may have potential for crop improvement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Affymetrix GeneChip (R) arrays are used widely to study transcriptional changes in response to developmental and environmental stimuli. GeneChip (R) arrays comprise multiple 25-mer oligonucleotide probes per gene and retain certain advantages over direct sequencing. For plants, there are several public GeneChip (R) arrays whose probes are localised primarily in 39 exons. Plant whole-transcript (WT) GeneChip (R) arrays are not yet publicly available, although WT resolution is needed to study complex crop genomes such as Brassica, which are typified by segmental duplications containing paralogous genes and/or allopolyploidy. Available sequence data were sampled from the Brassica A and C genomes, and 142,997 gene models identified. The assembled gene models were then used to establish a comprehensive public WT exon array for transcriptomics studies. The Affymetrix GeneChip (R) Brassica Exon 1.0 ST Array is a 5 mu M feature size array, containing 2.4 million 25-base oligonucleotide probes representing 135,201 gene models, with 15 probes per gene distributed among exons. Discrimination of the gene models was based on an E-value cut-off of 1E(-5), with <= 98 sequence identity. The 135 k Brassica Exon Array was validated by quantifying transcriptome differences between leaf and root tissue from a reference Brassica rapa line (R-o-18), and categorisation by Gene Ontologies (GO) based on gene orthology with Arabidopsis thaliana. Technical validation involved comparison of the exon array with a 60-mer array platform using the same starting RNA samples. The 135 k Brassica Exon Array is a robust platform. All data relating to the array design and probe identities are available in the public domain and are curated within the BrassEnsembl genome viewer at http://www.brassica.info/BrassEnsembl/index.html.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcriptional dysfunction is a prominent hallmark of Huntington's disease (HD). Several transcription factors have been implicated in the aetiology of HD progression and one of the most prominent is repressor element 1 (RE1) silencing transcription factor (REST). REST is a global repressor of neuronal gene expression and in the presence of mutant Huntingtin increased nuclear REST levels lead to elevated RE1 occupancy and a concomitant increase in target gene repression, including brain-derived neurotrophic factor. It is of great interest to devise strategies to reverse transcriptional dysregulation caused by increased nuclear REST and determine the consequences in HD. Thus far, such strategies have involved RNAi or mutant REST constructs. Decoys are double-stranded oligodeoxynucleotides corresponding to the DNA-binding element of a transcription factor and act to sequester it, thereby abrogating its transcriptional activity. Here, we report the use of a novel decoy strategy to rescue REST target gene expression in a cellular model of HD. We show that delivery of the decoy in cells expressing mutant Huntingtin leads to its specific interaction with REST, a reduction in REST occupancy of RE1s and rescue of target gene expression, including Bdnf. These data point to an alternative strategy for rebalancing the transcriptional dysregulation in HD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To date, anticonvulsant effects of the plant cannabinoid, cannabidivarin (CBDV), have been reported in several animal models of seizure. However, these behaviourally observed anticonvulsant effects have not been confirmed at the molecular level. To examine changes to epilepsy-related gene expression following chemical convulsant treatment and their subsequent control by phytocannabinoid administration, we behaviourally evaluated effects of CBDV (400 mg/kg, p.o.) on acute, pentylenetetra- zole (PTZ: 95 mg/kg, i.p.)-induced seizures, quantified expression levels of several epilepsy-related genes (Fos, Casp 3, Ccl3, Ccl4, Npy, Arc, Penk, Camk2a, Bdnf and Egr1) by qPCR using hippocampal, neocortical and prefrontal cortical tissue samples before examining correlations between expression changes and seizure severity. PTZ treatment alone produced generalised seizures (median: 5.00) and significantly increased expression of Fos, Egr1, Arc, Ccl4 and Bdnf. Consistent with previous findings, CBDV significantly decreased PTZ-induced seizure severity (median: 3.25) and increased latency to the first sign of seizure. Furthermore, there were correlations between reductions of seizure severity and mRNA expression of Fos, Egr1, Arc, Ccl4 and Bdnf in the majority of brain regions in the CBDV+PTZ treated group. When CBDV treated animals were grouped into CBDV responders (criterion: seizure severity ≤ 3.25) and non-responders (criterion: seizure severity >3.25), PTZ-induced increases of Fos, Egr1, Arc, Ccl4 and Bdnf expression were suppressed in CBDV re- sponders. These results provide the first molecular confirmation of behaviourally observed effects of the non-psychoactive, anticonvulsant cannabinoid, CBDV, upon chemically-induced seizures and serve to underscore its suitability for clinical development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Oocytes mature in ovarian follicles surrounded by granulosa cells. During follicle growth, granulosa cells replicate and secrete hormones, particularly steroids close to ovulation. However, most follicles cease growing and undergo atresia or regression instead of ovulating. To investigate the effects of stimulatory (follicle-stimulating hormone; FSH) and inhibitory (tumour necrosis factor alpha; TNFα) factors on the granulosa cell transcriptome, bovine ovaries were obtained from a local abattoir and pools of granulosa cells were cultured in vitro for six days under defined serum-free conditions with treatments present on days 3–6. Initially dose–response experiments (n = 4) were performed to determine the optimal concentrations of FSH (0.33 ng/ml) and TNFα (10 ng/ml) to be used for the microarray experiments. For array experiments cells were cultured under control conditions, with FSH, with TNFα, or with FSH plus TNFα (n = 4 per group) and RNA was harvested for microarray analyses. Results Statistical analysis showed primary clustering of the arrays into two groups, control/FSH and TNFα/TNFα plus FSH. The effect of TNFα on gene expression dominated that of FSH, with substantially more genes differentially regulated, and the pathways and genes regulated by TNFα being similar to those of FSH plus TNFα treatment. TNFα treatment reduced the endocrine activity of granulosa cells with reductions in expression of FST, INHA, INBA and AMH. The top-ranked canonical pathways and GO biological terms for the TNFα treatments included antigen presentation, inflammatory response and other pathways indicative of innate immune function and fibrosis. The two most significant networks also reflect this, containing molecules which are present in the canonical pathways of hepatic fibrosis/hepatic stellate cell activation and transforming growth factor β signalling, and these were up regulated. Upstream regulator analyses also predicted TNF, interferons γ and β1 and interleukin 1β. Conclusions In vitro, the transcriptome of granulosa cells responded minimally to FSH compared with the response to TNFα. The response to TNFα indicated an active process akin to tissue remodelling as would occur upon atresia. Additionally there was reduction in endocrine function and induction of an inflammatory response to TNFα that displays features similar to immune cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dairy intake, despite its high saturated fatty acid (SFA) content, is associated with a lower risk of cardiovascular disease and diabetes. This in vitro study determined the effect of individual fatty acids (FA) found in dairy, and FA mixtures representative of a high SFA and a low SFA dairy lipid on markers of endothelial function in healthy and type II diabetic aortic endothelial cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study demonstrates that the expression profile of cholesteatoma is similar to a metastatic tumour and chronically inflamed tissue. Based on the investigated profiles we present novel protein-protein interaction and signal transduction networks, which include cholesteatoma-regulated transcripts and may be of great value for drug targeting and therapy development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proneural transcription factor Ascl1 coordinates gene expression in both proliferating and differentiating progenitors along the neuronal lineage. Here, we used a cellular model of neurogenesis to investigate how Ascl1 interacts with the chromatin landscape to regulate gene expression when promoting neuronal differentiation. We find that Ascl1 binding occurs mostly at distal enhancers and is associated with activation of gene transcription. Surprisingly, the accessibility of Ascl1 to its binding sites in neural stem/progenitor cells remains largely unchanged throughout their differentiation, as Ascl1 targets regions of both readily accessible and closed chromatin in proliferating cells. Moreover, binding of Ascl1 often precedes an increase in chromatin accessibility and the appearance of new regions of open chromatin, associated with de novo gene expression during differentiation. Our results reveal a function of Ascl1 in promoting chromatin accessibility during neurogenesis, linking the chromatin landscape at Ascl1 target regions with the temporal progression of its transcriptional program.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The functional relationships and properties of different subtypes of dendritic cells (DC) remain largely undefined. To better characterize these cells, we used global gene analysis to determine gene expression patterns among murine CD11c(high) DC subsets. CD4(+), CD8alpha(+), and CD8alpha(-) CD4(-) (double negative (DN)) DC were purified from spleens of normal C57/BL6 mice and analyzed using Affymetrix microarrays. The CD4(+) and CD8alpha(+) DC subsets showed distinct basal expression profiles differing by >200 individual genes. These included known DC subset markers as well as previously unrecognized, differentially expressed CD Ags such as CD1d, CD5, CD22, and CD72. Flow cytometric analysis confirmed differential expression in nine of nine cases, thereby validating the microarray analysis. Interestingly, the microarray expression profiles for DN cells strongly resembled those of CD4(+) DC, differing from them by <25 genes. This suggests that CD4(+) and DN DC are closely related phylogenetically, whereas CD8alpha(+) DC represent a more distant lineage, supporting the historical distinction between CD8alpha(+) and CD8alpha(-) DC. However, staining patterns revealed that in contrast to CD4(+) DC, the DN subset is heterogeneous and comprises at least two subpopulations. Gene Ontology and literature mining analyses of genes expressed differentially among DC subsets indicated strong associations with immune response parameters as well as cell differentiation and signaling. Such associations offer clues to possible unique functions of the CD11c(high) DC subsets that to date have been difficult to define as rigid distinctions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chick Early B-cell Factor-2 and 3 (cEbf2 and cEbf3) genes are members of EBF family of helix loop helix transcription factors. The expression, regulation and importance of these genes have been extensively studied in lymphatic, nervous and muscular tissues. Recently, a new role for some members of EBF in bone development has been investigated. However, the expression profile and regulation in the axial skeleton precursor, the somite, have yet to be elucidated. Therefore, this study was aimed to investigate the expression and regulation of cEbf2 and cEbf3 genes in the developing chick embryo somite from HH4 to HH28. The spatiotemporal expression study revealed predominant localization of cEbf2 and cEbf3 in the lateral sclerotomal domains and later around vertebral cartilage anlagen of the arch and the proximal rib. Subsequently, microsurgeries, ectopic gene expression experiments were performed to analyze which tissues and factors regulate cEbf2 and cEbf3 expression. Lateral barriers experiments indicated the necessity for lateral signal(s) in the regulation of cEbf2 and cEbf3 genes. Results from tissue manipulations and ectopic gene expression experiments indicate that lateral plate-derived Bmp4 signals are necessary for the initiation and maintenance of cEbf2 and cEbf3 genes in somites. In conclusion, cEbf2 and cEbf3 genes are considered as lateral sclerotome markers which their expression is regulated by Bmp4 signals from the lateral plate mesoderm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidative stress induces cardiac myocyte apoptosis. At least some effects are probably mediated through changes in gene expression. Using Affymetrix arrays, we examined the changes in gene expression induced by H(2)O(2) (0.04, 0.1, and 0.2mM; 2 and 4h) in rat neonatal ventricular myocytes. Changes in selected upregulated genes were confirmed by ratiometric RT-PCR. p21(Cip1/Waf1) was one of the only two genes upregulated in all conditions studied. Of the heat shock proteins, only Hsp70/70.1 was induced by H(2)O(2) with no change in the expression of Hsp25, Hsp60 or Hsp90. Heme oxygenase 1 was also potently upregulated, but not heme oxygenases 2 or 3. Of the intercellular adhesion proteins, syndecan-1 was significantly upregulated in response to H(2)O(2), with little change in the expression of other syndecans and no change in expression of any of the integrins studied. Thus, oxidative stress, exemplified by H(2)O(2), selectively promotes the expression of specific gene family members.