22 resultados para methyl CpG binding protein 2


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The small (21-kDa) guanine nucleotide-binding protein Ras plays a central role in the regulation of cell growth and division. In the cardiac myocyte, it has been implicated in the hypertrophic adaptation. We have recently examined the ability of hypertrophic agonists such as endothelin-1, phenylephrine and phorbol esters to increase the "activity" (GTP loading) of Ras. We have also studied the signaling events that lead to activation of Ras and the processes that respond to Ras activation. In this brief review, we describe these studies and set them within the context of the hypertrophic response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

variety of transcription factors including Wilms tumor gene (Wt-1), steroidogenic factor 1 (Sf-1), dosage-sensitive sex reversal, adrenal hypoplasia congenita on the X-chromosome, Gene 1 (Dax-1), and pre-B-cell transcription factor 1 (Pbx1) have been defined as necessary for regular adrenocortical development. However, the role of Pbx1 for adrenal growth and function in the adult organism together with the molecular relationship between Pbx1 and these other transcription factors have not been characterized. We demonstrate that Pbx haploinsufficiency (Pbx1(+/-)) in mice is accompanied by a significant lower adrenal weight in adult animals compared with wild-type controls. Accordingly, baseline proliferating cell nuclear antigen levels are lower in Pbx1(+/-) mice, and unilateral adrenalectomy results in impaired contralateral compensatory adrenal growth, indicating a lower proliferative potential in the context of Pbx1 haploinsufficiency. In accordance with the key role of IGFs in adrenocortical proliferation and development, real-time RT-PCR demonstrates significant lower expression levels of the IGF-I receptor, and up-regulation of IGF binding protein-2. Functionally, Pbx1(+/-) mice display a blunted corticosterone response after ACTH stimulation coincident with lower adrenal expression of the ACTH receptor (melanocortin 2 receptor, Mc2-r). Mechanistically, in vitro studies reveal that Pbx1 and Sf-1 synergistically stimulates Mc2-r promoter activity. Moreover, Sf-1 directly activates the Pbx1 promoter activity in vitro and in vivo. Taken together, these studies provide evidence for a role of Pbx1 in the maintenance of a functional adrenal cortex mediated by synergistic actions of Pbx1 and Sf-1 in the transcriptional regulation of the critical effector of adrenocortical differentiation, the ACTH receptor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much recent interest has focused on the potential of flavonoids to interact with intracellular signaling pathways such as with the mitogen-activated protein kinase cascade. We have investigated whether the observed strong neurotoxic potential of quercetin in primary cortical neurons may occur via specific and sensitive interactions within neuronal mitogen-activated protein kinase and Akt/protein kinase B (PKB) signaling cascades, both implicated in neuronal apoptosis. Quercetin induced potent inhibition of both Akt/PKB and ERK phosphorylation, resulting in reduced phosphorylation of BAD and a strong activation of caspase-3. High quercetin concentrations (30 microM) led to sustained loss of Akt phosphorylation and subsequent Akt cleavage by caspase-3, whereas at lower concentrations (<10 microM) the inhibition of Akt phosphorylation was transient and eventually returned to basal levels. Lower levels of quercetin also induced strong activation of the pro-survival transcription factor cAMP-responsive element-binding protein, although this did not prevent neuronal damage. O-Methylated quercetin metabolites inhibited Akt/PKB to lesser extent and did not induce such strong activation of caspase-3, which was reflected in the lower amount of damage they inflicted on neurons. In contrast, neither quercetin nor its O-methylated metabolites had any measurable effect on c-Jun N-terminal kinase phosphorylation. The glucuronide of quercetin was not toxic and did not evoke any alterations in neuronal signaling, probably reflecting its inability to enter neurons. Together these data suggest that quercetin and to a lesser extent its O-methylated metabolites may induce neuronal death via a mechanism involving an inhibition of neuronal survival signaling through the inhibition of both Akt/PKB and ERK rather than by an activation of the c-Jun N-terminal kinase-mediated death pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Platelet aggregation and phosphorylation of phospholipase Cγ2 induced by collagen were attenuated in ADAP(-/-) platelets. However, aggregation and signaling induced by collagen-related peptide (CRP), a GPVI-selective agonist, were largely unaffected. Platelet adhesion to CRP was also unaffected by ADAP deficiency. Adhesion to the α(2) β(1) -selective ligand GFOGER and to a peptide (III-04), which supports adhesion that is dependent on both GPVI and α(2) β(1), was reduced in ADAP(-/-) platelets. An impedance-based label-free detection technique, which measures adhesion and spreading of platelets, indicated that, in the absence of ADAP, spreading on GFOGER was also reduced. This was confirmed with non-fluorescent differential-interference contrast microscopy, which revealed reduced filpodia formation in ADAP(-/-) platelets adherent to GFOGER. This indicates that ADAP plays a role in mediating platelet activation via the collagen-binding integrin α(2) β(1). In addition, we found that ADAP(-/-) mice, which are mildly thrombocytopenic, have enlarged spleens as compared with wild-type animals. This may reflect increased removal of platelets from the circulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although in different groups, the coronaviruses severe acute respiratory syndrome-coronavirus (SARS-CoV) and NL63 use the same receptor, angiotensin converting enzyme (ACE)-2, for entry into the host cell. Despite this common receptor, the consequence of entry is very different; severe respiratory distress in the case of SARS-CoV but frequently only a mild respiratory infection for NL63. Using a wholly recombinant system, we have investigated the ability of each virus receptor-binding protein, spike or S protein, to bind to ACE-2 in solution and on the cell surface. In both assays, we find that the NL63 S protein has a weaker interaction with ACE-2 than the SARS-CoV S protein, particularly in solution binding, but the residues required for contact are similar. We also confirm that the ACE-2-binding site of NL63 S lies between residues 190 and 739. A lower-affinity interaction with ACE-2 might partly explain the different pathological consequences of infection by SARS-CoV and NL63.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neoglycolipid technology is the basis of a microarray platform for assigning oligosaccharide ligands for carbohydrate-binding proteins. The strategy for generating the neoglycolipid probes by reductive amination results in ring opening of the core monosaccharides. This often limits applicability to short-chain saccharides, although the majority of recognition motifs are satisfactorily presented with neoglycolipids of longer oligosaccharides. Here, we describe neoglycolipids prepared by oxime ligation. We provide evidence from NMR studies that a significant proportion of the oxime-linked core monosaccharide is in the ring-closed form, and this form selectively interacts with a carbohydrate-binding protein. By microarray analyses we demonstrate the effective presentation with oxime-linked neoglycolipids of (1) Lewis(x) trisaccharide to antibodies to Lewisx, (2) sialyllactose analogs to the sialic acid-binding receptors, siglecs, and (3) N-glycans to a plant lectin that requires an intact N-acetylglucosamine core.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: While much data exist for the effects of flavonoid-rich foods on spatial memory in rodents, there are no such data for foods/beverages predominantly containing hydroxycinnamates and phenolic acids. To address this, we investigated the effects of moderate Champagne wine intake, which is rich in these components, on spatial memory and related mechanisms relative to the alcohol- and energy-matched controls. Results: In contrast to the isocaloric and alcohol-matched controls, supplementation with Champagne wine (1.78 ml/kg BW, alcohol 12.5% vol.) for 6 weeks led to an improvement in spatial working memory in aged rodents. Targeted protein arrays indicated that these behavioral effects were paralleled by the differential expression of a number of hippocampal and cortical proteins (relative to the isocaloric control group), including those involved in signal transduction, neuroplasticity, apoptosis, and cell cycle regulation. Western immunoblotting confirmed the differential modulation of brain-derived neurotrophic factor, cAMP response-element-binding protein (CREB), p38, dystrophin, 2',3'-cyclic-nucleotide 3'-phosphodiesterase, mammalian target of rapamycin (mTOR), and Bcl-xL in response to Champagne supplementation compared to the control drink, and the modulation of mTOR, Bcl-xL, and CREB in response to alcohol supplementation. Innovation: Our data suggest that smaller phenolics such as gallic acid, protocatechuic acid, tyrosol, caftaric acid, and caffeic acid, in addition to flavonoids, are capable of exerting improvements in spatial memory via the modulation in hippocampal signaling and protein expression. Conclusion: Changes in spatial working memory induced by the Champagne supplementation are linked to the effects of absorbed phenolics on cytoskeletal proteins, neurotrophin expression, and the effects of alcohol on the regulation of apoptotic events in the hippocampus and cortex. Antioxid. Redox Signal. 00, 000-000.