26 resultados para COA REDUCTASE INHIBITORS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

YqjH is a cytoplasmic FAD-containing protein from Escherichia coli; based on homology to ViuB of Vibrio cholerae, it potentially acts as a ferri-siderophore reductase. This work describes its overexpression, purification, crystallization and structure solution at 3.0 A resolution. YqjH shares high sequence similarity with a number of known siderophore-interacting proteins and its structure was solved by molecular replacement using the siderophore-interacting protein from Shewanella putrefaciens as the search model. The YqjH structure resembles those of other members of the NAD(P)H:flavin oxidoreductase superfamily.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nuclear Dbf2-related protein kinases 1 and 2 (NDR1/2) are closely-related AGC family kinases that are strongly conserved through evolution. In mammals, they are activated inter alia by phosphorylation of an hydrophobic domain threonine-residue [NDR1(Thr-444)/NDR2(Thr-442)] by an extrinsic protein kinase followed by autophosphorylation of a catalytic domain serine-residue [NDR1(Ser-281)/NDR2(Ser-282)]. We examined NDR1/2 expression and regulation in primary cultures of neonatal rat cardiac myocytes and in perfused adult rat hearts. In myocytes, transcripts for NDR2, but not NDR1, were induced by the hypertrophic agonist, endothelin-1. NDR1(Thr-444) and NDR2(Thr-442) were rapidly phosphorylated (maximal in 15-30 min) in myocytes exposed to some phosphoprotein Ser-/Thr-phosphatase 1/2 inhibitors (calyculin A, okadaic acid) and, to a lesser extent, by hyperosmotic shock, low concentrations of H(2)O(2), or chelerythrine. In myocytes adenovirally-transduced to express FLAG-NDR2 (which exhibited a mainly-cytoplasmic localisation), the same agents increased FLAG-NDR2 activity as assessed by in vitro protein kinase assays, indicative of FLAG-NDR2(Ser-282/Thr-442) phosphorylation. Calyculin A-induced phosphorylation of NDR1(Thr-444)/NDR2(Thr-442) and activation of FLAG-NDR2 were inhibited by staurosporine, but not by other protein kinase inhibitors tested. In ex vivo rat hearts, NDR1(Thr-444)/NDR2(Thr-442) were phosphorylated in response to ischaemia-reperfusion or calyculin A. From a pathological viewpoint, we conclude that activities of NDR1 and NDR2 are responsive to cytotoxic stresses in heart preparations and this may represent a previously-unidentified response to myocardial ischaemia in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parkinson's disease is characterized by a progressive and selective loss of dopaminergic neurons in the substantia nigra. Recent investigations have shown that conjugates such as the 5-S-cysteinyl-dopamine, possess strong neurotoxicity and may contribute to the underlying progression of the disease pathology. Although the neuroprotective actions of flavonoids are well reported, that of hydroxycinnamates and other phenolic acids is less established. We show that the hydroxycinnamates caffeic acid and p-coumaric acid, the hydroxyphenethyl alcohol, tyrosol, and a Champagne wine extract rich in these components protect neurons against injury induced by 5-S-cysteinyl-dopamine in vitro. The protection induced by these polyphenols was equal to or greater than that observed for the flavonoids, (+)-catechin, (-)-epicatechin and quercetin. For example, p-coumaric acid evoked significantly more protection at 1muM (64.0+/-3.1%) than both (-)-epicatechin (46.0+/-4.1%, p<0.05) and (+)-catechin (13.1+/-3.0%, p<0.001) at the same concentration. These data indicate that hydroxycinnamates, phenolic acids and phenolic alcohol are also capable of inducing neuroprotective effects to a similar extent to that seen with flavonoids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ribonucleotide reductases supply cells with their deoxyribonucleotides. Three enzyme types are known, classes I, II and III. Class II enzymes are anaerobic whereas class I enzymes are aerobic, and so class I and II enzymes are often produced by the same organism under opposing oxygen regimes. Escherichia coli contains two types of class I enzyme (Ia and Ib) with the Fe-dependent Ia enzyme (NrdAB) performing the major role aerobically, leaving the purpose of the Ib enzyme (NrdEF) unclear. Several papers have recently focused on the class Ib enzymes showing that they are Mn (rather than Fe) dependent and suggesting that the E. coli NrdEF may function under redox-stress conditions. A paper published in this issue of Molecular Microbiology from James Imlay's group confirms that this unexplained NrdEF Ib enzyme is Mn-dependent, but shows that it does not substitute for NrdAB during redox stress. Instead, a role during iron restriction is demonstrated. Thus, the purpose of NrdEF (and possibly other class Ib enzymes) is to enhance growth under aerobic, low-iron conditions, and to functionally replace the Fe-dependent NrdAB when iron is unavailable. This finding reveals a new mechanism by which bacteria adjust to life under iron deprivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Members of the Arenaviridae are a threat to public health and can cause meningitis and hemorrhagic fever, yet treatment options remain limited by a lack of effective antivirals. In this study, we found that peptide-conjugated phosphorodiamidate morpholino oligomers (PPMO) complementary to viral genomic RNA were effective in reducing arenavirus replication in cell cultures and in vivo. PPMO complementary to the Junín virus genome were designed to interfere with viral RNA synthesis, translation, or both. However, only PPMO designed to potentially interfere with translation were effective in reducing virus replication. PPMO complementary to sequence that is highly conserved across arenaviruses and located at the 5’-termini of both genomic segments were effective against Junín, Tacaribe, Pichinde and Lymphocytic Choriomeningitis arenavirus-infected cell cultures, and suppressed viral titers in the livers of LCMV-infected mice. These results suggest that arenavirus 5’-genomic-termini represent promising targets for pan-arenavirus antiviral therapeutic development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Histone deacetylase inhibitors (HDACIs) interfere with the epigenetic process of histone acetylation and are known to have analgesic properties in models of chronic inflammatory pain. The aim of this study was to determine whether these compounds could also affect neuropathic pain. Different class I HDACIs were delivered intrathecally into rat spinal cord in models of traumatic nerve injury and antiretroviral drug-induced peripheral neuropathy (stavudine, d4T). Mechanical and thermal hypersensitivity was attenuated by 40% to 50% as a result of HDACI treatment, but only if started before any insult. The drugs globally increased histone acetylation in the spinal cord, but appeared to have no measurable effects in relevant dorsal root ganglia in this treatment paradigm, suggesting that any potential mechanism should be sought in the central nervous system. Microarray analysis of dorsal cord RNA revealed the signature of the specific compound used (MS-275) and suggested that its main effect was mediated through HDAC1. Taken together, these data support a role for histone acetylation in the emergence of neuropathic pain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complete sequences of the dsrA and dsrB genes coding for the α− and β−subunits, respectively, of the sulphite reductase enzyme in Desulfovibrio desulfuricans were determined. Analyses of the amino acid sequences indicated a number of serohaem/Fe4S4 binding consensus sequences whilst predictive secondary structure analysis revealed a similar pattern of α−helix and β−strand structures between the two subunits which was indicative of gene duplication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidemiological and clinical trials reveal compelling evidence for the ability of dietary flavonoids to lower cardiovascular disease risk. The mechanisms of action of these polyphenolic compounds are diverse, and of particular interest is their ability to function as protein and lipid kinase inhibitors. We have previously described structure-activity studies that reinforce the possibility for using flavonoid structures as templates for drug design. In the present study, we aim to begin constructing rational screening strategies for exploiting these compounds as templates for the design of clinically relevant, antiplatelet agents. We used the platelet as a model system to dissect the structural influence of flavonoids, stilbenes, anthocyanidins, and phenolic acids on inhibition of cell signaling and function. Functional groups identified as relevant for potent inhibition of platelet function included at least 2 benzene rings, a hydroxylated B ring, a planar C ring, a C ring ketone group, and a C-2 positioned B ring. Hydroxylation of the B ring with either a catechol group or a single C-4' hydroxyl may be required for efficient inhibition of collagen-stimulated tyrosine phosphorylated proteins of 125 to 130 kDa, but may not be necessary for that of phosphotyrosine proteins at approximately 29 kDa. The removal of the C ring C-3 hydroxyl together with a hydroxylated B ring (apigenin) may confer selectivity for 37 to 38 kDa phosphotyrosine proteins. We conclude that this study may form the basis for construction of maps of flavonoid inhibitory activity on kinase targets that may allow a multitargeted therapeutic approach with analogue counterparts and parent compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of 3-oxo-C12-HSL, tetramic acid and tetronic acid analogues was synthesized to gain insights into the structural requirements for quorum sensing inhibition in Staphylococcus aureus. Compounds active against agr were non-competitive inhibitors of the auto-inducing peptide (AIP)-activated AgrC receptor, by altering the activation efficacy of the cognate AIP-1. They appeared to act as negative allosteric modulators and are exemplified by 3-tetradecanoyltetronic acid 17 which reduced nasal cell colonization and arthritis in a murine infection model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we investigated the effects of Caesalpinia decapetala (CD) extracts on lipid oxidation in ground beef patties. Plant extracts and butylated hydroxytoluene (BHT) were individually added to patties at both 0.1% and 0.5% (w/w) concentrations. We assessed the antioxidant efficacy of CD by the ferric reducing antioxidant power (FRAP) assay and evaluated their potential as natural antioxidants for meat preservation by thiobarbituric acid reactive substance (TBARS) values, hexanal content, fatty acid composition and color parameters. These were tested periodically during 11 days of refrigerated storage. TBARS levels were significantly lower (p ≤ 0.05) in the samples containing plant extracts or BHT than in the non-treated control. In addition, the beef patties formulated with the selected plant extracts showed significantly (p ≤ 0.05) better color stability than those without antioxidants. These results indicate that edible plant extracts are promising sources of natural antioxidants and can potentially be used as functional preservatives in meat products.