3 resultados para Sewage treatment

em Universitat de Girona, Spain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The control and prediction of wastewater treatment plants poses an important goal: to avoid breaking the environmental balance by always keeping the system in stable operating conditions. It is known that qualitative information — coming from microscopic examinations and subjective remarks — has a deep influence on the activated sludge process. In particular, on the total amount of effluent suspended solids, one of the measures of overall plant performance. The search for an input–output model of this variable and the prediction of sudden increases (bulking episodes) is thus a central concern to ensure the fulfillment of current discharge limitations. Unfortunately, the strong interrelation between variables, their heterogeneity and the very high amount of missing information makes the use of traditional techniques difficult, or even impossible. Through the combined use of several methods — rough set theory and artificial neural networks, mainly — reasonable prediction models are found, which also serve to show the different importance of variables and provide insight into the process dynamics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a case study that explores the advantages that can be derived from the use of a design support system during the design of wastewater treatment plants (WWTP). With this objective in mind a simplified but plausible WWTP design case study has been generated with KBDS, a computer-based support system that maintains a historical record of the design process. The study shows how, by employing such a historical record, it is possible to: (1) rank different design proposals responding to a design problem; (2) study the influence of changing the weight of the arguments used in the selection of the most adequate proposal; (3) take advantage of keywords to assist the designer in the search of specific items within the historical records; (4) evaluate automatically the compliance of alternative design proposals with respect to the design objectives; (5) verify the validity of previous decisions after the modification of the current constraints or specifications; (6) re-use the design records when upgrading an existing WWTP or when designing similar facilities; (7) generate documentation of the decision making process; and (8) associate a variety of documents as annotations to any component in the design history. The paper also shows one possible future role of design support systems as they outgrow their current reactive role as repositories of historical information and start to proactively support the generation of new knowledge during the design process

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The activated sludge process - the main biological technology usually applied to wastewater treatment plants (WWTP) - directly depends on live beings (microorganisms), and therefore on unforeseen changes produced by them. It could be possible to get a good plant operation if the supervisory control system is able to react to the changes and deviations in the system and can take the necessary actions to restore the system’s performance. These decisions are often based both on physical, chemical, microbiological principles (suitable to be modelled by conventional control algorithms) and on some knowledge (suitable to be modelled by knowledge-based systems). But one of the key problems in knowledge-based control systems design is the development of an architecture able to manage efficiently the different elements of the process (integrated architecture), to learn from previous cases (spec@c experimental knowledge) and to acquire the domain knowledge (general expert knowledge). These problems increase when the process belongs to an ill-structured domain and is composed of several complex operational units. Therefore, an integrated and distributed AI architecture seems to be a good choice. This paper proposes an integrated and distributed supervisory multi-level architecture for the supervision of WWTP, that overcomes some of the main troubles of classical control techniques and those of knowledge-based systems applied to real world systems